2016多校训练Contest5: 1007 K-wolf Number hdu5787

Problem Description
Alice thinks an integer x is a K-wolf number, if every K adjacent digits in decimal representation of x is pairwised different.
Given (L,R,K), please count how many K-wolf numbers in range of [L,R].
 

Input
The input contains multiple test cases. There are about 10 test cases.

Each test case contains three integers L, R and K.

1LR1e18
2K5
 

Output
For each test case output a line contains an integer.
 

Sample Input
  
  
1 1 2 20 100 5
 

Sample Output
  
  
1 72

直接数位dp

f[i][d1]……[dk]表示前i位前面各位分别为d1……dk的方案数

直接枚举位数转移即可

注意处理前导0和001023这种情况

可以考虑把前导0赋值成10

因为不想传递数组各种判断,就k=2 3 4 5分别写了一份程序

#include<map>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int a[21];
long long f2[21][11][11];
int dd[11];
inline long long dfs2(int len,int d1,int d2,bool lim,bool lim2)
{
	int i,j;
	dd[1]=d1;dd[2]=d2;
	bool flag=true;
	for(i=1;i<=2;i++)
	{
		if(dd[i]==10)
			continue;
		for(j=i+1;j<=2;j++)
		{
			if(dd[i]==dd[j])
			{
				flag=false;
				break;
			}
		}
		if(!flag) break;
	}
    if(!flag)
        return 0;
    else if(lim2&&len==0)
    	return 0;
    else if(len==0)
    	return 1;
    if(!lim&&f2[len][d1][d2]!=0)
        return f2[len][d1][d2];
    int limit;
    if(lim)
        limit=a[len];
    else
        limit=9;
    long long ans=0;
    for(i=0;i<=limit;i++)
    {
    	int dx=i;
    	if(dx==0&&lim2)
    		dx=10;
        ans+=dfs2(len-1,d2,dx,lim&&i==a[len],lim2&&i==0);
    }
    if(!lim)
        f2[len][d1][d2]=ans;
    return ans;
}
inline long long cale2(long long x)
{
    int len=0;
    while(x!=0)
    {
        len++;
        a[len]=x%(long long)10;
        x=x/(long long)10;
    }
    int i,j;
    long long ans=0;
    ans+=dfs2(len,10,10,true,true);
    return ans;
}
//--------------------------3-----------------------------------
long long f3[21][11][11][11];
inline long long dfs3(int len,int d1,int d2,int d3,bool lim,bool lim2)
{
	int i,j;
	dd[1]=d1;dd[2]=d2;dd[3]=d3;
	bool flag=true;
	for(i=1;i<=3;i++)
	{
		if(dd[i]==10)
			continue;
		for(j=i+1;j<=3;j++)
		{
			if(dd[i]==dd[j])
			{
				flag=false;
				break;
			}
		}
		if(!flag) break;
	}
    if(!flag)
        return 0;
    else if(lim2&&len==0)
    	return 0;
    else if(len==0)
    	return 1;
    if(!lim&&f3[len][d1][d2][d3]!=0)
        return f3[len][d1][d2][d3];
    int limit;
    if(lim)
        limit=a[len];
    else
        limit=9;
    long long ans=0;
    for(i=0;i<=limit;i++)
    {
    	int dx=i;
    	if(dx==0&&lim2)
    		dx=10;
        ans+=dfs3(len-1,d2,d3,dx,lim&&i==a[len],lim2&&i==0);
    }
    if(!lim)
        f3[len][d1][d2][d3]=ans;
    return ans;
}
inline long long cale3(long long x)
{
    int len=0;
    while(x!=0)
    {
        len++;
        a[len]=x%(long long)10;
        x=x/(long long)10;
    }
    int i,j;
    long long ans=0;
    ans+=dfs3(len,10,10,10,true,true);
    return ans;
}
//--------------------------4-----------------------------------
long long f4[21][11][11][11][11];
inline long long dfs4(int len,int d1,int d2,int d3,int d4,bool lim,bool lim2)
{
	int i,j;
	dd[1]=d1;dd[2]=d2;dd[3]=d3;dd[4]=d4;
	bool flag=true;
	for(i=1;i<=4;i++)
	{
		if(dd[i]==10)
			continue;
		for(j=i+1;j<=4;j++)
		{
			if(dd[i]==dd[j])
			{
				flag=false;
				break;
			}
		}
		if(!flag) break;
	}
    if(!flag)
        return 0;
    else if(lim2&&len==0)
    	return 0;
    else if(len==0)
    	return 1;
    if(!lim&&f4[len][d1][d2][d3][d4]!=0)
        return f4[len][d1][d2][d3][d4];
    int limit;
    if(lim)
        limit=a[len];
    else
        limit=9;
    long long ans=0;
    for(i=0;i<=limit;i++)
    {
    	int dx=i;
    	if(dx==0&&lim2)
    		dx=10;
        ans+=dfs4(len-1,d2,d3,d4,dx,lim&&i==a[len],lim2&&i==0);
    }
    if(!lim)
        f4[len][d1][d2][d3][d4]=ans;
    return ans;
}
inline long long cale4(long long x)
{
    int len=0;
    while(x!=0)
    {
        len++;
        a[len]=x%(long long)10;
        x=x/(long long)10;
    }
    int i,j;
    long long ans=0;
    ans+=dfs4(len,10,10,10,10,true,true);
    return ans;
}
//--------------------------5-----------------------------------
long long f5[21][11][11][11][11][11];
inline long long dfs5(int len,int d1,int d2,int d3,int d4,int d5,bool lim,bool lim2)
{
	int i,j;
	dd[1]=d1;dd[2]=d2;dd[3]=d3;dd[4]=d4;dd[5]=d5;
	bool flag=true;
	for(i=1;i<=5;i++)
	{
		if(dd[i]==10)
			continue;
		for(j=i+1;j<=5;j++)
		{
			if(dd[i]==dd[j])
			{
				flag=false;
				break;
			}
		}
		if(!flag) break;
	}
    if(!flag)
        return 0;
    else if(lim2&&len==0)
    	return 0;
    else if(len==0)
    	return 1;
    if(!lim&&f5[len][d1][d2][d3][d4][d5]!=0)
        return f5[len][d1][d2][d3][d4][d5];
    int limit;
    if(lim)
        limit=a[len];
    else
        limit=9;
    long long ans=0;
    for(i=0;i<=limit;i++)
    {
    	int dx=i;
    	if(dx==0&&lim2)
    		dx=10;
        ans+=dfs5(len-1,d2,d3,d4,d5,dx,lim&&i==a[len],lim2&&i==0);
    }
    if(!lim)
        f5[len][d1][d2][d3][d4][d5]=ans;
    return ans;
}
inline long long cale5(long long x)
{
    int len=0;
    while(x!=0)
    {
        len++;
        a[len]=x%(long long)10;
        x=x/(long long)10;
    }
    int i,j;
    long long ans=0;
    ans+=dfs5(len,10,10,10,10,10,true,true);
    return ans;
}
int main()
{
	long long l,r;
	int k;
	while(scanf("%I64d%I64d%d",&l,&r,&k)!=EOF)
	{
		if(k==2)
			printf("%I64d\n",cale2(r)-cale2(l-1));
		else if(k==3)
			printf("%I64d\n",cale3(r)-cale3(l-1));
		else if(k==4)
			printf("%I64d\n",cale4(r)-cale4(l-1));
		else if(k==5)
			printf("%I64d\n",cale5(r)-cale5(l-1));
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值