codeforces796D Police Stations

Inzane finally found Zane with a lot of money to spare, so they together decided to establish a country of their own.

Ruling a country is not an easy job. Thieves and terrorists are always ready to ruin the country's peace. To fight back, Zane and Inzane have enacted a very effective law: from each city it must be possible to reach a police station by traveling at most d kilometers along the roads.

There are n cities in the country, numbered from 1 to n, connected only by exactly n - 1 roads. All roads are 1 kilometer long. It is initially possible to travel from a city to any other city using these roads. The country also has k police stations located in some cities. In particular, the city's structure satisfies the requirement enforced by the previously mentioned law. Also note that there can be multiple police stations in one city.

However, Zane feels like having as many as n - 1 roads is unnecessary. The country is having financial issues, so it wants to minimize the road maintenance cost by shutting down as many roads as possible.

Help Zane find the maximum number of roads that can be shut down without breaking the law. Also, help him determine such roads.

Input

The first line contains three integers nk, and d (2 ≤ n ≤ 3·1051 ≤ k ≤ 3·1050 ≤ d ≤ n - 1) — the number of cities, the number of police stations, and the distance limitation in kilometers, respectively.

The second line contains k integers p1, p2, ..., pk (1 ≤ pi ≤ n) — each denoting the city each police station is located in.

The i-th of the following n - 1 lines contains two integers ui and vi (1 ≤ ui, vi ≤ nui ≠ vi) — the cities directly connected by the road with index i.

It is guaranteed that it is possible to travel from one city to any other city using only the roads. Also, it is possible from any city to reach a police station within d kilometers.

Output

In the first line, print one integer s that denotes the maximum number of roads that can be shut down.

In the second line, print s distinct integers, the indices of such roads, in any order.

If there are multiple answers, print any of them.

Examples
input
6 2 4
1 6
1 2
2 3
3 4
4 5
5 6
output
1
5
input
6 3 2
1 5 6
1 2
1 3
1 4
1 5
5 6
output
2
4 5 
Note

In the first sample, if you shut down road 5, all cities can still reach a police station within k = 4 kilometers.

In the second sample, although this is the only largest valid set of roads that can be shut down, you can print either 4 5 or 5 4 in the second line.


n个点的树上有k个警察局,问你最多可以删除多少条边,使得剩下的点到最近的近差距的距离都不大于d


感觉这个d没啥用。。因为题目说了一开始可行,因此我们只需要把所有警察局加进queue里面bfs即可。当下一个点走过了但是边没走过的时候,那条边就可以删除

#include<queue>
#include<cstdio>
using namespace std;
queue<int> Q;
struct line
{
	int s,t;
	int next;
}a[600001];
int head[300001];
int edge;
inline void add(int s,int t)
{
	a[edge].next=head[s];
	head[s]=edge;
	a[edge].s=s;
	a[edge].t=t;
}
int pre[300001]; 
bool v[300001];
bool vx[300001];
int xx[300001];
int main()
{
	int n,k,t;
	scanf("%d%d%d",&n,&k,&t);
	int ss,tt,i,x;
	for(i=1;i<=k;i++)
	{
		scanf("%d",&x);
		Q.push(x);
		v[x]=true;
	}
	for(i=1;i<=n-1;i++)
	{
		scanf("%d%d",&ss,&tt);
		edge++;
		add(ss,tt);
		edge++;
		add(tt,ss);
	}
	int ans=0;
	while(!Q.empty())
	{
		int d=Q.front();
		Q.pop();
		for(i=head[d];i!=0;i=a[i].next)
		{
			int t=a[i].t;
			if(!v[t])
			{
				v[t]=true;
				Q.push(t);
				pre[t]=d;
				vx[(i+1)/2]=true;
			}
			else if(!vx[(i+1)/2]&&pre[d]!=t)
			{
				vx[(i+1)/2]=true;
				ans++;
				xx[ans]=(i+1)/2;
			}
		}
	}
	printf("%d\n",ans);
	for(i=1;i<=ans-1;i++)
		printf("%d ",xx[i]);
	if(ans!=0)
		printf("%d\n",xx[i]);
	return 0;
}


### Codeforces Problem 1014D 解答与解释 当前问题并未提供关于 **Codeforces Problem 1014D** 的具体描述或相关背景信息。然而,基于常见的竞赛编程问题模式以及可能涉及的主题领域(如数据结构、算法优化等),可以推测该问题可能属于以下类别之一: #### 可能的解法方向 如果假设此问题是典型的计算几何或者图论类题目,则通常会涉及到如下知识点: - 图遍历(DFS 或 BFS) - 贪心策略的应用 - 动态规划的状态转移方程设计 由于未给出具体的输入输出样例和约束条件,这里无法直接针对Problem 1014D 提供精确解答。但是可以根据一般性的解决思路来探讨潜在的方法。 对于类似的复杂度较高的题目,在实现过程中需要注意边界情况处理得当,并且要充分考虑时间效率的要求[^5]。 以下是伪代码框架的一个简单例子用于说明如何构建解决方案逻辑流程: ```python def solve_problem(input_data): n, m = map(int, input().split()) # 初始化必要的变量或数组 graph = [[] for _ in range(n)] # 构建邻接表或其他形式的数据表示方法 for i in range(m): u, v = map(int, input().split()) graph[u].append(v) result = [] # 执行核心算法部分 (比如 DFS/BFS 遍历) visited = [False]*n def dfs(node): if not visited[node]: visited[node] = True for neighbor in graph[node]: dfs(neighbor) result.append(node) for node in range(n): dfs(node) return reversed(result) ``` 上述代码仅为示意用途,实际应用需依据具体题目调整细节参数设置及其功能模块定义[^6]。 #### 关键点总结 - 明确理解题意至关重要,尤其是关注特殊测试用例的设计意图。 - 对于大规模数据集操作时应优先选用高效的时间空间性能表现良好的技术手段。 - 结合实例验证理论推导过程中的每一步骤是否合理有效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值