Description
小蛇是金融部部长。最近她决定制造一系列新的货币。假设她要制造的货币的面值为x1,x2,x3… 那么x1必须为1,xb必须为xa的正整数倍(b>a)。例如 1,5,125,250就是一组合法的硬币序列,而1,5,100,125就不是。不知从哪一天开始,可爱的蛇爱上了一种萌物——兔纸!从此,小蛇便走上了遇上兔纸娃娃就买的不归路。某天,小蛇看到了N只可爱的兔纸,假设这N 只兔纸的价钱分别是a1,a2…aN。现在小蛇想知道,在哪一组合法的硬币序列下,买这N只兔纸所需要的硬币数最少。买兔纸时不能找零。
Input
第一行,一个整数N,表示兔纸的个数
第二行,N个用空格隔开的整数,分别为N只兔纸的价钱
Output
一行,一个整数,表示最少付的钱币数。
Sample Input
2
25 102
25 102
Sample Output
4
HINT
样例解释:共有两只兔纸,价钱分别为25和102。现在小蛇构造1,25,100这样一组硬币序列,那么付第一只兔纸只需要一个面值为25的硬币,第二只兔纸需要一个面值为100的硬币和两个面值为1的硬币,总共两只兔纸需要付4个硬币。这也是所有方案中最少所需要付的硬币数。
1<=N<=50, 1<=ai<=100,000
f[i]表示面值最大为i的时候的最少数量
那么我们就有转移f[i]=min(f[i/x]-(x-1)*sigma(a[k]/i))
对于后面那个sigma我们可以考虑把除出来相同的结果放到一起进行累加
这样可以在根号的效率下完成计算
#include<queue>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
int f[100001];
int s[100001];
int a[100001];
int main()
{
int n;
scanf("%d",&n);
int i,j;
int sum=0,lim=0;
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
lim=max(lim,a[i]);
s[a[i]]++;
}
for(i=1;i<=lim;i++)
s[i]+=s[i-1];
memset(f,127,sizeof(f));
f[1]=sum;
for(i=2;i<=lim;i++)
{
int ss=0;
for(j=i;j<=lim;j++)
{
int k=i*(j/i+1)-1;
k=min(k,lim);
ss+=(j/i)*(s[k]-s[j-1]);
// cout<<ss<<endl;
j=k;
}
int ax=f[1];
for(j=1;j*j<=i;j++)
{
if(i%j==0)
{
ax=min(ax,f[j]-(i/j-1)*ss);
ax=min(ax,f[i/j]-(j-1)*ss);
}
}
f[i]=ax;
}
int ans=2100000000;
for(i=1;i<=lim;i++)
ans=min(ans,f[i]);
printf("%d\n",ans);
return 0;
}