如果想让 DeepSeek
了解你的公司业务,就把相关的文档上传给它。
1、RAG
为了投喂数据,我们要用到RAG。首先,我们先来了解下什么是RAG?
根据百度百科的解释,检索增强生成(Retrieval-augmented Generation),简称RAG,是当下热门的大模型前沿技术之一。检索增强生成模型结合了语言模型和信息检索技术。具体来说,当模型需要生成文本或者回答问题时,它会先从一个庞大的文档集合中检索出相关的信息,然后利用这些检索到的信息来指导文本的生成,从而提高预测的质量和准确性。
翻译下:我们把知识放到知识库里,然后把它投喂给人工智能。我们需要用一个量化的工具,把各种格式的数据量化给人工智能,让它能看得懂。人工智能通过对这些知识的学习后,以后你再问它的时候,他就能将知识提取出来,加工处理后回答你的问题。
2、拉取nomic-embed-text
各种开源免费的RAG工具挺多,我选择ollama 提供的nomic-embed-text。
3、配置Page Assist
之前在电脑上安装了Chatbox,没有找到在哪设置RAG,在网上查找资料,发现了Page Assist,这是一个浏览器插件,我使用的是Microsoft Edge,直接在扩展中搜索Page Assist。
点击安装就可以了。安装完选择下大模型,修改下语言,设置成中文。
接下来就可以在浏览器中与大模型进行对话了。
4、在Page Assist中配置RAG
在Page Assist配置页面有一个RAG设置文本嵌入模型。文本嵌入模型就是把我们投喂的各种文档数据量化成DeepSeek认识的数据。配置下我们下载的nomic-embed-text.
接下来就是开始向deepseek投喂数据。直接问内容,是没有相关回答的。
在设置-知识管理里面上传相关文档,目前支持pdf、csv、txt、md格式的文件。
然后在输入框右下角选择引用知识后再提问。
可以对上传的内容进行总结分析。