Friendship and Mobility :User Movement In Location-Based Social Networks(2013.10.10)

本文基于LBSN数据与手机记录,构建了一个综合模型来解析人类的移动行为,分为短途与长途两种类型。模型考虑了周期性规律、地理位置限制与社交关系对移动的影响,通过家庭定位和社交网络分析来识别家乡与日常活动范围。研究发现,人们倾向于移动至好友附近,但实际行为与直觉预测不同。时间周期如周末与假期会增加长途旅行的频率,而工作日则更多是短途周期性移动。该文深入探讨了人类移动模式的复杂性与预测挑战。
摘要由CSDN通过智能技术生成
1.[ABSTRACT ]目标是发现左右人类移动、运动的基本法则。人类的运动由周期性受地理位置限制的运动及一些随机的运动组成。其中的短途的旅行在时间和空间上都是周期性的且不受地理位置的影响,长途的旅行往往受限于社交关系。据此建立人类运动的模型
2。一些想法:短途数据的是否是依据LBSN中的签到来判断?长途是否先要判定出其家乡或者长期居住地,然后通过距离计算判断其是长途旅行?想来长途和短途都必须依据一个中心点来衡量距离。周期性如何判断?长途如何判断和好友关系有关,此当涉及到线上和线下的联系?时间上来讲,周末与假期当是较为远的线路比较多,工作日当多是近程的周期性的移动。此文当是对短途及长途进行了划分,人类的限制确实受到地理位置的限制和社交关系的限制,可不可以找到别的一些创新点。
3。[INTRODUCTION] 基于观察建立了Periodic&Social Mobility Model.模型的三个元素:1)一个用户经常访问的空间位置模型 2)这些位置之间暂时性移动的模型 3)被社交关系影响的移动模型
4。。CHARACTERISTICS OF CHECK-INS,当是数据集的特点,除了LBSN的数据,也采用了手机的数据。他的家庭定位采取了划分网格的方法(将世界划分成25份,将home的位置定义为出现次数最多的网格),言及经过观察精度为25%, 思考:事实上,这种方法明显比不上find  me if you can文中采用的方法find  me if you can  也是有缺陷的,ta他是依据社交关系确定家乡,但是人的经常活动范围应该是工作单位,和家乡应该是两个点,学生群体就是如此。家乡和家也应该加以界定。又看了下FIND ME IF YOU CAN 当时预测当前位置
5。[FRIENDSHIP AND MOBILITY]研究用户的社交结构和移动性:Moveing close to a friend 's home :直觉认为人们更倾向于移动到离自己好友位置较近 的地方,随着距离变远,倾向减弱。因为朋友离我们近,所以倾向认为其 对我们的移动影响更大一些,结果却不是这样。
Influence of friends on an individual's mobility :
Moving to where a friend has checked-in before :
Limits of using friendship for predicting mobility :
Temporal and geographic periodicity of human movement :
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值