- 博客(167)
- 资源 (5)
- 收藏
- 关注
转载 GAN原理及相关发展总结
转自:http://www.sohu.com/a/143961544_741733导语这次的内容主要是想梳理 GAN 从 NIPS 2014 被提出,到 2017年5月,都有哪些重要的从原理和方法上的重要研究。一共覆盖了25篇重要论文(论文列表见本文最下方)。引言:GAN的惊艳应用首先来看看 GAN 现在能做到哪些惊艳的事呢?GAN 可以被用来学习生成各种各样的字体...
2019-06-02 19:21:50
3154
转载 模拟上帝之手的对抗博弈——GAN背后的数学原理
转自:https://www.cnblogs.com/jins-note/p/9550561.html模拟上帝之手的对抗博弈——GAN背后的数学原理简介深度学习的潜在优势就在于可以利用大规模具有层级结构的模型来表示相关数据所服从的概率密度。从深度学习的浪潮掀起至今,深度学习的最大成功在于判别式模型。判别式模型通常是将高维度的可感知的输入信号映射到类别标签。训练判别式模型得益于反向传播算...
2019-06-02 19:17:37
1355
原创 用pycharm同时链接多个服务器
1.打开Deployment里面的configurations,选择左上角的Add按钮2.选择server group,并命名服务器组名字3.在当前服务器组中添加配置文件4.比如说下面这个就是配置好的文件5,在当前服务器组下选择For current project 按钮,此时这个服务器组配置white只用于当前这个项目,white不显示在其他项目的confi...
2019-05-29 20:34:40
3585
原创 可控生成文章汇总
1.2018(aclweb)-Towards Controllable Story Generation摘要:我们提出了一个分析现有故事语料库的总体框架, 以产生可控和创造性的新故事。该框架几乎不需要手动注释就能实现可控的故事生成。它为人类创建了一个新的界面, 用于与计算机交互以生成个性化的故事。我们应用该框架构建基于重复神经网络 (RNN) 的生成模型, 以控制故事结束的功能 1 (Egi...
2019-05-28 15:12:02
1839
转载 使用BERT fine-tuning 用于推特情感分析
转自:https://blog.csdn.net/huang_cainiao/article/details/89174200代码:https://github.com/XiaoQQin/BERT-fine-tuning-for-twitter-sentiment-analysis
2019-05-28 14:53:35
966
转载 AAAI2018-Long Text Generation via Adversarial Training with Leaked Information论文笔记
这篇文章主要是名为 LeakGAN 的模型结构,同时处理 D 反馈信息量不足和反馈稀疏的两个问题。LeakGAN 就是一种让鉴别器 D 提供更多信息给生成器 G 的新方式,我自己的笔记:转自:http://www.sohu.com/a/195150459_114877自生成式对抗性网络 GANs 出现以来,它和它的变体已经无数次在图像生成任务中证明了自己的有效性,也不断地吸引着越...
2019-05-28 14:31:48
950
转载 条件变分自编码器CVAE
转自:https://zhuanlan.zhihu.com/p/25518643上一期探讨了变分自编码器模型(VAEs),本期继续生成模型的专题,我们来看一下条件概率版本的变分自编码器(CVAEs)。(对应的,另一类生成模型GANs也有条件概率版本,称为CGANs。)VAE回顾VAE的目标是最大化对数似然函数其中,由于KL散度非负,对数似然函数的变分下界即为...
2019-05-28 13:29:05
7956
转载 Latent Alignment and Variational Attention论文笔记
注意力 (attention) 模型在神经网络中被广泛应用,不过注意力机制一般是决定性的而非随机变量。来自哈佛大学的研究人员提出了将注意力建模成隐变量,应用变分自编码器(Variational Auto-Encoder,VAE)和梯度策略来训练模型,在不使用 kl annealing 等训练技巧的情况下进行训练,目前在 IWSLT German-English 上取得了非常不错的成果。论文...
2019-05-27 02:17:51
1489
转载 sklearn计算准确率、精确率、召回率、F1 score
详细请看https://blog.csdn.net/hfutdog/article/details/88085878目录混淆矩阵准确率精确率召回率P-R曲线F1 score参考资料分类是机器学习中比较常见的任务,对于分类任务常见的评价指标有准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1 score、ROC曲线(Receiver...
2019-05-22 20:30:45
3679
转载 Pytorch nn.Embedding用法(包括加载预训练模型,加载Word2vec,加载glove)
版权声明:我是小仙女 转载要告诉小仙女哦 https://blog.csdn.net/qq_40210472/article/details/88995433pytorch nn.Embeddingclass torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_t...
2019-05-21 13:26:27
7448
1
转载 Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation笔记
来源:ACL2018链接:[1804.08069] Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation 4源码:snakeztc/NeuralDialog-LAED 1转自:https://bigquant.com/community/t/to...
2019-05-20 22:37:25
643
原创 安装spacy以及在torchtext中使用它
下载源码:https://github.com/explosion/spaCy安装:pip installspaCy-master.zip下载模型:python -m spacy download en_core_web_sm注意,在torchtext中使用spacy时,由于field的默认属性是tokenizer_language='en'当使用en_core_...
2019-05-16 18:42:45
2325
转载 安装anaconda
1.从官网下载Linux版本的anaconda,https://www.anaconda.com/download/2.安装anaconda,执行下列命令bash Anaconda2-5.0.0.1-Linux-x86_64.sh3.在安装过程中会显示配置路径Prefix=/home/jsy/anaconda2/4.安装完之后,运行python,仍是ubuntu自带的p...
2019-05-16 13:36:02
144
转载 CUDNN_STATUS_NOT_INITIALIZED解决汇总
CUDNN_STATUS_NOT_INITIALIZED 问题解决方法1.只需要将cudnn64_6.dll拷贝到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin目录下即可方法2.安装nvida驱动方法3看gpu是否被占用了,我的属于这个---------------------作者:Shell...
2019-05-16 13:32:47
8331
4
转载 安装torchtext
Introduction本文主要介绍如何使用Torchtext读取文本数据集。Torchtext是非官方的、一种为pytorch提供文本数据处理能力的库, 类似于图像处理库Torchvision。Install下载地址:https://github.com/text安装:pip install text-master.zip测试安装是否成功: import torchtext...
2019-05-16 13:22:02
5564
原创 《Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory》笔记
Abstract感知和情感表达是对话系统或对话者成功的关键因素。然而, 到目前为止, 这个问题还没有在大规模对话生成中得到研究。在本文中, 我们提出了情绪聊天机 (ECM), 可以产生适当的反应, 不仅在内容 (相关和语法), 但也在情感 (情感一致)。据我们所知, 这是第一部解决大规模对话生成中情感因素的作品。ECM 使用三种新机制来解决这一因素, 这三种机制分别采用 (1) 通过嵌入情感...
2019-05-07 20:08:17
802
2
原创 可控文本生成《Toward Controlled Generation of Text》
文章链接:http://pdfs.semanticscholar.org/efbc/200feab74e5087c4005d8759e5dadb3a3077.pdf1) 文本生成过程:通过VAE网络重建输入文本。2)模型对生成信息的控制:2.1)在VAE网络的隐藏层中加入unstructure变量c,作为attribute的信息输入。2.2)模型中加入了discrimin...
2019-04-22 00:39:28
1426
转载 读论文《Toward Controlled Generation of Text》
代码:https://github.com/wiseodd/controlled-text-generation作者博客:http://www.cs.cmu.edu/~zhitingh/Toward Controlled Generation of Text这篇论文是Zhiting Hu发布在ICML2017上的paper。这篇paper主要干的事情就是其题目中所描述的,生成可以控制方向的...
2019-04-22 00:37:12
808
转载 《A Deep Generative Framework for Paraphrase Generation》论文笔记
转自:https://ldzhangyx.github.io/2018/09/26/deep-para-generation/这篇文章发表在2018年的AAAI上,继承了VAE在自然语言处理上的应用,将其应用于句子复述上,用于生成相似的句子;同时因为RNN可以作为语言模型使用,语句的语法正确性也有一定提升。论文地址:https://arxiv.org/pdf/1709.05074.pd...
2019-04-21 17:27:55
1067
原创 半监督VAE文本分类中对无标签以及有标签数据的处理区别
论文笔记:https://cloud.tencent.com/developer/news/43321Semi-supervised Learning with Deep Generative Models-------2014 NIPS参考的复现代码:https://github.com/wead-hsu/semi-vae1.对于有标签数据先求重构损失,再加分类损失,要...
2019-04-21 17:13:41
4702
1
转载 VAE在NLP中的应用
转自:http://rsarxiv.github.io/2017/03/02/PaperWeekly%E7%AC%AC%E4%BA%8C%E5%8D%81%E4%B8%83%E6%9C%9F/转自:http://www.zhiding.cn/techwalker/documents/J9UpWRDfVYHE5TpRGiv0xtyE8PkOpXEHWb_a1TS4qjg提及 Generati...
2019-04-18 21:10:07
5984
1
原创 pytorch安装记录
转自:http://www.pianshen.com/article/3827257032/step1:安装anacoda下载地址bash Anaconda3-2018.12-Linux-x86_64.sh1step2:按照官网的方法安装pytorchconda install pytorch torchvision cudatoolkit=10.0 -c pytorch...
2019-04-15 20:44:48
423
转载 安装seq2seq(用git源码安装例子)
1.安装keras2.安装recurrentshop git地址附使用教程 https://github.com/farizrahman4u/recurrentshop git clone https://www.github.com/datalogai/recurrentshop.gitcd recurrentshoppython setup.py install...
2019-04-15 15:38:51
872
1
转载 Linux下查看CPU和GPU使用情况
Linux查看GPU信息和使用情况Linux查看显卡信息:lspci | grep -i vga使用nvidia GPU可以:lspci | grep -i nvidia [root@gpu-server-002 ~]# lspci | grep -i nvidia 02:00.0 VGA compatible controller: NVIDIA Cor...
2019-04-12 20:54:04
11933
转载 AI Challenger 2018情感分析赛道资料汇总
汇总AI Challenger 2018 已近尾声,各赛道top选手已经结束了代码核验,正在准备12月18、19日 AI Challenger 决赛答辩材料的路上。在本年度 AI Challenger 即将尘埃落定之时,这里整理一批目前网上可见的文本挖掘相关赛道的解决方案和代码,欢迎补充,同时感谢github,感谢各位开源的同学。细粒度用户评论情感分析在线评论的细粒度情感分析对于深刻...
2019-04-12 16:38:08
5290
3
原创 《Semisupervised Autoencoder for Sentiment Analysis》阅读笔记
(AAAI-16)-Semisupervised Autoencoder for Sentiment Analysis摘要:本文研究了自动编码器在文本数据建模中的应用。传统的自动编码器至少有两个方面的问题: 具有较高的词汇量的可扩展性和处理与任务无关的单词。我们通过自动编码器的损失函数引入监督来解决这个问题。特别是, 我们首先在标记的数据上训练一个线性分类器, 然后使用从线性分类器中获得的...
2019-04-10 19:08:50
742
转载 论文读书笔记-semi-supervised recursive autoencoders for predicting sentiment distributions
文章主要介绍了使用递归自编码器做句子情感分类的方法。和之前的方法相比,本文的算法没有使用任何预设定的情感词汇和极性转换规则。并在movie reviews数据集上取得了SOTA的效果。当时主流的方法还是词袋模型,但词袋模型无法很好的句法信息,而一些改进则利用的是一些手工特征(如:情感词,解析树,极性转换规则)本论文的创新:使用层次结构和成分语义信息可以使用无标签数据,也可以监督学习,且不...
2019-04-09 23:07:52
311
转载 sigmoid,softmax,binary/categorical crossentropy的联系?
sigmoid和softmax是神经网络输出层使用的激活函数,分别用于两类判别和多类判别。binary cross-entropy和categorical cross-entropy是相对应的损失函数。对应的激活函数和损失函数相匹配,可以使得error propagation的时候,每个输出神经元的“误差”(损失函数对输入的导数)恰等于其输出与ground truth之差。作者:王赟...
2019-04-08 22:27:49
344
转载 源码解读之Fine-tune
这是我们源码解读的最后一个部分了。fine-tune搞明白之后推断也就没必要再分析了,反正形式都是一样的,重要的是明白根据不同任务调整输入格式和对loss的构建,这两个知识点学会之后,基本上也可以依葫芦画瓢做一些自己的任务了。bert官方给了两个任务的fine-tune代码:1.run_classifier.py2.run_squad.py其实就是我们在Bert系列(一)——dem...
2019-04-03 21:55:57
1595
1
原创 bert的一系列资料
1.bert-as-servicehttps://github.com/hanxiao/bert-as-service2.参考文献两行代码玩转 Google BERT 句向量词向量 hanxiao/bert-as-service google-research/bert 利用Bert构建句向量并计算相似度3.预训练模型下载链接:https://linux.ctolib.com/...
2019-04-01 23:32:32
573
原创 半监督vae用于情感分类的论文汇总阅读:Variational Autoencoder
1.AAAI-2017-Variational Autoencoder for Semi-Supervised Text Classification摘要:虽然半监督变分自动编码器 (SemiVAE) 在图像分类任务中工作, 但如果使用vanilla LSTM作为解码器, 则在文本分类任务中失败。从强化学习的角度出发, 验证了解码器区分不同分类标签的能力是必不可少的。因此, 提出了半......
2019-03-28 23:47:28
5117
1
原创 关于使用服务器gpu的问题,cuda_driver.cc:300] failed call to cuInit: CUDA_ERROR_INVALID_DEVICE: invalid device o
2019-03-28 16:18:25.717636: E tensorflow/stream_executor/cuda/cuda_driver.cc:300] failed call to cuInit: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal运行代码时遇到这个报错,苦苦搜索,然而网上的答案我对照过都没有问题,这是服务器GPU状...
2019-03-28 16:27:10
3652
转载 TensorFlow版本配套关系表(cudnn、cuda、Python的配套关系,包含所有操作系统)
TensoFlow版本配套关系表由于前一段时间做了一个关于深度学习的项目,在项目中发现Windows环境下不能安装Python2.7版本的tensorflow,然后索性就来了解一下tensorflow的各种版本的配套关系。cuda、cudnn的安装方法请参考我的另外一篇博客。需要注意:1.Windows环境下不能安装Python2.7版本的tensorflow;2.tensor...
2019-03-26 14:47:44
220
原创 使用远程服务器时,使用TensorFlow的一点坑
每次在工程下新建一个python文件,如果在文件中使用到了tensorflow,此时要注意文件的环境变量那里有没有写好。不然会找不到服务器的cuda
2019-03-24 21:10:54
948
转载 BERT使用详解(实战)
BERT模型,本质可以把其看做是新的word2Vec。对于现有的任务,只需把BERT的输出看做是word2vec,在其之上建立自己的模型即可了。1,下载BERTBERT-Base, Uncased: 12-layer, 768-hidden, 12-heads, 110M parameters BERT-Large, Uncased: 24-layer, 1024-hidden, 16-...
2019-03-22 21:35:29
14222
13
转载 BERT、GPT-2这些顶尖工具到底该怎么用到我的模型里?
转自:http://www.dataguru.cn/article-14544-1.html近期的NLP方向,ELMO、GPT、BERT、Transformer-XL、GPT-2,各种预训练语言模型层出不穷,这些模型在各种NLP任务上一次又一次刷新上线,令人心驰神往。但是当小编翻开他们的paper,每一个上面都写着四个大字:“弱者退散”,到底该怎么将这些顶尖工具用到我的模型里呢?答案是Hugg...
2019-03-22 19:48:39
2450
转载 谷歌BERT模型fine-tune终极实践教程
从11月初开始,Google Research就陆续开源了BERT的各个版本。Google此次开源的BERT是通过TensorFlow高级API—— tf.estimator进行封装(wrapper)的。因此对于不同数据集的适配,只需要修改代码中的processor部分,就能进行代码的训练、交叉验证和测试。奇点机智技术团队将结合利用BERT在AI-Challenger机器阅读理解赛...
2019-03-22 16:52:12
2568
2
转载 keras:Embedding层详解(解释了参数的具体含义,有例子)
嵌入层将正整数(下标)转换为具有固定大小的向量,如[[4],[20]]->[[0.25,0.1],[0.6,-0.2]]Embedding层只能作为模型的第一层参数input_dim:大或等于0的整数,字典长度,即输入数据最大下标+1output_dim:大于0的整数,代表全连接嵌入的维度embeddings_initializer: 嵌入矩阵的初始化方法,为预定义初始化方法名的字...
2019-03-21 16:42:33
37194
5
转载 两个小例子带你词嵌入层学习入门——Keras版
转自:https://yq.aliyun.com/articles/221681词嵌入提供了词的密集表示及其相对含义。最简单的理解就是:将词进行向量化表示,实体的抽象成了数学描述,就可以进行建模了。它们是对较简单的单词模型表示中使用的稀疏表示的改进。Word嵌入可以从文本数据中学习,并在项目之间重用。它们也可以作为在文本数据上拟合神经网络的一部分。在本教程中,你将学到如何使用Pyt...
2019-03-21 15:10:09
860
产品评论情感分类代码-python
2018-08-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅