1.Anaconda-创建虚拟环境的手把手教程

介绍(必看)

博主会创建一个深度学习的专栏,后续所有的实践分享都是基于此篇文章的模块版本。如果有想一起学习的小伙伴,版本的安装尽量与文章中一直,避免出现不必要的麻烦!

正文

版本信息

其他模块的版本信息会根据使用需要,不断进行更新扩充。

python		3.8.3
tensorflow	2.6.4
keras		2.6.0
tensorboard	2.6.0
protobuf	3.17.3
numpy		1.19.5
matplotlib	3.2.2
scipy		1.7.3
scikit-learn	0.24.2
jieba		0.42.1
pandas		1.0.5
xlrd		1.2.0
openpyxl	3.0.4

模块安装流程

准备工作:
Anaconda的安装,这个CSDN上很多博主都过详细的教学,所以此处不再进行叙述。

以下操作默认以及成功安装了Anaconda

首先打开Anaconda Powershell Prompt

1.创建虚拟环境

tensorflow2.6.4是你要创建虚拟空间的名字

conda create -n tensorflow2.6.4 -y
2.激活环境
conda activate tensorflow2.6.4

下图是成功激活虚拟空间的状态
在这里插入图片描述

3.退出虚拟环境
conda deactivate tensorflow2.6.4
4.安装python(激活虚拟环境)

此步骤要在激活的虚拟环境中输入

conda create -n tensorflow2.6.4 python=3.8.3 -y

安装的python版本为3.8.3

5.安装tensorflow(激活虚拟环境)

此步骤要在激活的虚拟环境中输入

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==2.6.4

安装的tensorflow版本为2.6.4

6.安装matplotlib

此步骤要在激活的虚拟环境中输入

pip install matplotlib==3.2.2

安装的tensorflow版本为3.2.2

7.protobuf版本太高会有问题(激活虚拟环境)

此步骤要在激活的虚拟环境中输入

 卸载 pip uninstall protobuf
 安装 pip install protobuf==3.19.0
 查看 pip show protobuf

安装的protobuf版本为3.19.0

8.安装scipy和scikit-learn(激活虚拟环境)
pip install scipy==1.7.3
pip install scikit-learn==0.24.2
9.安装jieba和pandas(激活虚拟环境)
pip install jieba==0.42.1
pip install pandas==1.0.5
10.安装其他安装包(激活虚拟环境)

1.不安装openpyxl安装包的话对pandas的一些性能有影响

pip install xlrd==1.2.0
pip install openpyxl==3.0.4

常用的指令(一定会用到)

1.查询环境

查询当前有多少个虚拟环境,以下2个指令哪个都行

conda info --envs
conda env list
2.查询安装包列表

查询当前虚拟环境中,已经安装了哪些安装包

conda list
3.删除虚拟环境
conda remove -n tensorflow2.6.4 --all -y
4.复制环境(将tensorflow2.6.4环境复制到tensorflowTest )

如果你以及有了一个可以运行的虚拟环境版本,可以拷贝一份虚拟环境,作为备用,防止由于操作失误导致一些模块的版本发生变化。

conda create -n tensorflowTest --clone tensorflow2.6.4
5.删除安装包

如果是pip install pack_name 安装的包使用下面的指令进行删除

pip uninstall pack_name
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值