异或
文章平均质量分 88
离散化
这个作者很懒,什么都没留下…
展开
-
151022的测试总结
第一题【题目及题号】异或 superoj948 【题解】 性质一:当x为偶数时,x^(x+1) = 0; 所以可以根据k进行分类讨论。 (一)当k >= 4时 ①r-l+1>4 直接输出连续的四个数(x为偶数,x,x+1,x+2,x+3);异或和为0; ②r-l+1=4 枚举(2^4)-1种情况求最小。 (二)当k < 4时 ①k = 1直接输出左界l;原创 2015-10-22 15:11:51 · 293 阅读 · 0 评论 -
151023的测试总结
第一题【题目及题号】分裂 superoj950 【题解】 根据均值不等式的推广可以证明把一个数分得越均匀产生的贡献越大。 所以就可以枚举将其分成多少份。 又因为正向求解比较复杂,所以我们考虑把n分成n个一产生的贡献减去把多少个1合并在一起减少的贡献。 最大产生的贡献为 n*(n-1)/2; 然后把n分成i份 each = n/i,rest = n%i; 现在相当于从rest个each中原创 2015-10-23 17:04:07 · 237 阅读 · 0 评论 -
151029的测试总结
第一题【题目及题号】sequence superoj974 【题解】 本题是一个结论题,答案为以下两种情况的最大值。 最大的放中间,最小的放左边,次小的放右边,次大的…… 最小的放中间…… 比较一下就好了。 【考试ING】 想了四十分钟只写出来暴力,旁边两个大神都写完T1的样子。然后我就开始安静地手玩儿。 发现将大的数排序,然后往中间插小的数可以得到普遍最优解,写了个骗分程序1;原创 2015-10-29 16:49:56 · 351 阅读 · 0 评论