【AI相关】模型相关技术名词

本文介绍了过拟合和欠拟合两种模型问题,以及特征清洗、数据变换、训练集、验证集和测试集在模型构建过程中的作用。同时探讨了跨时间测试和回溯测试在软件质量保证中的运用,以及联合建模和联邦学习这种数据隐私保护的机器学习方法。最后提到了API在软件间协作中的重要性。
摘要由CSDN通过智能技术生成

目录

过拟合和欠拟合

1.过拟合

2.欠拟合

特征清洗、数据变换、训练集、验证集和测试集

1.特征清洗 

2.数据变换

3.训练集

4.验证集

5.测试集

跨时间测试和回溯测试

1.跨时间测试(OOT 测试)

2.回溯测试

联合建模与联邦学习

1.联合建模

2.联邦学习

API


过拟合和欠拟合

1.过拟合

过拟合是指模型在训练数据上表现得非常好,但在新的、未见过的数据上表现很差。

这就像是一个学生把课本上的内容背得滚瓜烂熟,但遇到实际问题时却不知道如何解决。

过拟合通常是因为模型过于复杂,或者训练数据太少,导致模型把训练数据中的噪声也学习进去了。

2.拟合

欠拟合则相反,是指模型在训练数据上表现就很差,更不用说在新的数据上了。

这就像是一个学生连课本上的内容都没有完全理解。

欠拟合通常是因为模型过于简单,或者训练数据太少,导致模型无法捕捉到数据的真实规律。


特征清洗、数据变换、训练集、验证集和测试集

1.特征清洗 

简单解释:把数据中的“脏东西”去掉,让数据变得干净整齐。

例子:假设你有一个学生成绩的数据集,其中有一些学生的成绩是空的或者写成了“未知”。特征清洗就是把这些空的或错误的成绩去掉或替换成合理的值,确保每个学生都有一个准确的成绩。

2.数据变换

简单解释:把数据变得更容易理解和使用。

例子:如果你有一组学生的身高数据,单位是厘米。但为了方便比较,你想把这些身高数据转换成米。数据变换就是做这个单位转换的过程,让数据更容易比较和分析。

3.训练集

简单解释:用来教模型学习的数据。

例子:假设你想训练一个识别猫和狗的模型。你会给模型看很多猫和狗的照片,告诉它哪些是猫,哪些是狗。这些用来训练模型的照片就是训练集。

4.验证集

简单解释:用来检查模型学得怎么样的数据。

例子:在训练模型的过程中,你会用一些额外的照片来检查模型是否学会了区分猫和狗。这些照片就是验证集。如果模型在验证集上的表现很好,说明它可能学会了。

5.测试集

简单解释:用来测试模型最终学得如何的数据。

例子:当模型训练完成后,你会用一组全新的、模型从未见过的照片来测试它。这些照片就是测试集。如果模型在测试集上的表现也很好,那么你可以更有信心地认为这个模型在实际应用中也会表现得很好。


跨时间测试和回溯测试

1.跨时间测试(OOT 测试)

含义:跨时间测试是指在不同的时间点对软件进行测试,以检查软件在不同时间段的性能、稳定性和功能是否一致。

通俗解释:想象一下,你有一个软件,你在它刚发布时测试了一次,然后在几个月后再次测试。这就是跨时间测试。目的是确保软件在经过一段时间后仍然能够正常工作,没有出现问题。

2.回溯测试

含义:回溯测试是指在修复了软件中的某个问题或添加了新功能后,重新运行之前的测试用例,以确保该问题已被解决,并且新的更改没有引入新的问题。

通俗解释:假设你的软件有一个bug,你修复了它。为了确保这个修复真的有效,并且没有引入其他的问题,你会重新运行之前为这个bug编写的测试用例。这就是回溯测试。

简而言之,跨时间测试关注软件在不同时间的表现,而回溯测试关注修复或更改后软件的表现。

联合建模与联邦学习

1.联合建模

简单解释:联合建模是多个团队或组织合作,把他们的数据和知识放在一起,共同创建一个模型。

例子

假设有两家电商公司,它们各自都有用户购物数据。

为了更准确地预测用户的购买行为,这两家公司可以决定联合建模。

它们将各自的数据合并,并共同训练一个模型。这样,模型就能利用更多的数据,从而可能做出更准确的预测。

2.联邦学习

简单解释:联邦学习是一种保护隐私的机器学习方法。在联邦学习中,各个参与方可以在不共享原始数据的情况下,共同训练一个模型。

例子

假设有多个医院想要合作开发一个疾病预测模型,但它们不希望共享患者的具体医疗数据,以保护患者隐私。

这时,它们可以采用联邦学习。

每家医院在自己的数据上训练模型的一部分,然后将这部分模型的结果分享给其他医院。

通过这种方式,各个医院可以在不暴露原始数据的情况下,共同训练出一个更准确的预测模型。


API

全称是“Application Programming Interface”,中文可以翻译为“应用程序编程接口”。

它是不同软件应用程序之间的通信桥梁,允许不同的软件组件或系统之间进行数据交换和功能调用。

简单来说,API就像是一个翻译,让不同的软件或系统能够“说”同一种“语言”,从而实现互相协作和数据共享。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃不胖的熊猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值