1范数小于等于根号n倍的2范数
∥
x
∥
1
⩽
n
⋅
∥
x
∥
2
\left\|x\right\|_1\leqslant\sqrt{n}\cdot\left\|x\right\|_2
∥x∥1⩽n⋅∥x∥2
证明:
上式即为:
∑
i
=
1
n
∣
a
i
∣
⩽
n
∑
i
=
1
n
∣
a
i
∣
2
\sum^n_{i=1}|a_i|\leqslant\sqrt{n\sum^n_{i=1}|a_i|^2}
i=1∑n∣ai∣⩽ni=1∑n∣ai∣2
令n维向量
α
=
(
1
,
1
,
⋯
,
1
)
T
β
=
(
∣
a
1
∣
,
∣
a
2
∣
,
⋯
,
∣
a
n
∣
)
T
\alpha=(1,1,\cdots,1)^T\quad\beta=(|a_1|,|a_2|,\cdots,|a_n|)^T
α=(1,1,⋯,1)Tβ=(∣a1∣,∣a2∣,⋯,∣an∣)T
由内积的柯西不等式:
∣
(
α
,
β
)
∣
⩽
∣
α
∣
⋅
∣
β
∣
|(\alpha,\beta)|\leqslant|\alpha|\cdot|\beta|
∣(α,β)∣⩽∣α∣⋅∣β∣
其中:
(
α
,
β
)
=
∑
i
=
1
n
∣
a
i
∣
(\alpha,\beta)=\sum^n_{i=1}|a_i|
(α,β)=i=1∑n∣ai∣
∣
α
∣
=
(
α
,
α
)
=
n
|\alpha|=\sqrt{(\alpha,\alpha)}=\sqrt{n}
∣α∣=(α,α)=n
∣
β
∣
=
(
β
,
β
)
=
∑
i
=
1
n
∣
a
i
∣
2
|\beta|=\sqrt{(\beta,\beta)}=\sqrt{\sum^n_{i=1}|a_i|^2}
∣β∣=(β,β)=i=1∑n∣ai∣2