1范数小于等于根号n倍的2范数

博客主要围绕1范数小于等于根号n倍的2范数展开,给出了不等式 ∥x∥1⩽√n⋅∥x∥2 ,并通过令n维向量α=(1,1,⋯,1)T、β=(∣a1∣,∣a2∣,⋯,∣an∣)T,利用内积的柯西不等式进行证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1范数小于等于根号n倍的2范数

∥x∥1⩽n⋅∥x∥2\left\|x\right\|_1\leqslant\sqrt{n}\cdot\left\|x\right\|_2x1nx2
证明:
上式即为:
∑i=1n∣ai∣⩽n∑i=1n∣ai∣2\sum^n_{i=1}|a_i|\leqslant\sqrt{n\sum^n_{i=1}|a_i|^2}i=1naini=1nai2
令n维向量α=(1,1,⋯ ,1)Tβ=(∣a1∣,∣a2∣,⋯ ,∣an∣)T\alpha=(1,1,\cdots,1)^T\quad\beta=(|a_1|,|a_2|,\cdots,|a_n|)^Tα=(1,1,,1)Tβ=(a1,a2,,an)T
由内积的柯西不等式:
∣(α,β)∣⩽∣α∣⋅∣β∣|(\alpha,\beta)|\leqslant|\alpha|\cdot|\beta|(α,β)αβ
其中:
(α,β)=∑i=1n∣ai∣(\alpha,\beta)=\sum^n_{i=1}|a_i|(α,β)=i=1nai
∣α∣=(α,α)=n|\alpha|=\sqrt{(\alpha,\alpha)}=\sqrt{n}α=(α,α)=n
∣β∣=(β,β)=∑i=1n∣ai∣2|\beta|=\sqrt{(\beta,\beta)}=\sqrt{\sum^n_{i=1}|a_i|^2}β=(β,β)=i=1nai2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值