1范数小于等于根号n倍的2范数
∥x∥1⩽n⋅∥x∥2\left\|x\right\|_1\leqslant\sqrt{n}\cdot\left\|x\right\|_2∥x∥1⩽n⋅∥x∥2
证明:
上式即为:
∑i=1n∣ai∣⩽n∑i=1n∣ai∣2\sum^n_{i=1}|a_i|\leqslant\sqrt{n\sum^n_{i=1}|a_i|^2}i=1∑n∣ai∣⩽ni=1∑n∣ai∣2
令n维向量α=(1,1,⋯ ,1)Tβ=(∣a1∣,∣a2∣,⋯ ,∣an∣)T\alpha=(1,1,\cdots,1)^T\quad\beta=(|a_1|,|a_2|,\cdots,|a_n|)^Tα=(1,1,⋯,1)Tβ=(∣a1∣,∣a2∣,⋯,∣an∣)T
由内积的柯西不等式:
∣(α,β)∣⩽∣α∣⋅∣β∣|(\alpha,\beta)|\leqslant|\alpha|\cdot|\beta|∣(α,β)∣⩽∣α∣⋅∣β∣
其中:
(α,β)=∑i=1n∣ai∣(\alpha,\beta)=\sum^n_{i=1}|a_i|(α,β)=i=1∑n∣ai∣
∣α∣=(α,α)=n|\alpha|=\sqrt{(\alpha,\alpha)}=\sqrt{n}∣α∣=(α,α)=n
∣β∣=(β,β)=∑i=1n∣ai∣2|\beta|=\sqrt{(\beta,\beta)}=\sqrt{\sum^n_{i=1}|a_i|^2}∣β∣=(β,β)=i=1∑n∣ai∣2