自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

惊鸿一博

Learn and Live

  • 博客(538)
  • 收藏
  • 关注

原创 深度图补全-depth inpainting

Deep Depth Completion of a single RGB-D Image状态:开源,pytorch,matlab,C++下载地址: https://github.com/yindaz/DeepCompletionRelease思路:目前效果最好(截止至2019. 06),耗时长。使用rgb image作为输入预测物体表面稠密法线及遮挡区域的边缘信息。使用这些预测结果与原始的depth图像结合,通过全局优化,对原始图像中像素缺失问题进行解决。由于现有数据集中ground trut

2020-10-31 21:30:15 3187 1

原创 论文笔记总结_S2D_从稀疏到稠密

1.2018-ICRA_稀疏到稠密:从稀疏深度样本+单一图像的深度预测以下4篇为传统方法:2. 2013-CVPR-结合三维场景重建和类别分割3. 2010-BMVC-目标类别分割和稠密立体重建的联合优化4.2011-CVPR-对象立体化-联合立体匹配与对象分割5.2012-ECCV-从立体图像中提取与场景一致的三维对象和深6.2018-BMVC-用于实时语义分割的轻量级精细网络RefineNet7.2017-CVPR-RefineNet: 用于高分辨率语义分割的多路径...

2020-10-23 16:42:03 1114

原创 论文笔记_S2D.18_2019-ICRA_DeepFusion: 基于单视图深度和梯度预测的单目SLAM实时稠密三维重建

基本情况题目:DeepFusion: real-time dense 3D reconstruction for monocular SLAM using single-view depth and gradient predictions (深度融合: 基于单视图深度和梯度预测的单目SLAM实时稠密三维重建) 作者:Laidlow, T., Czarnowski, J., & Leutenegger, S Dyson Robotics Laboratory, Imperial Co

2020-09-27 10:58:31 576

原创 论文笔记_S2D.01-2018-ICRA_Sparse-to-Dense:从稀疏深度样本+单一图像的深度预测

论文出处题目: Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image 出处: Mal F, Karaman S. Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image[C]. international conference on robotics and automation, 2018: 1-

2020-08-05 15:16:49 2600

原创 论文笔记_SLAM_综述十几篇_目录

年份 题目 出处 作者 主要内容 链接 讨论与启发 ...

2020-02-13 18:46:04 1313

原创 数学_使用舒尔补简化矩阵求逆

使用舒尔补简化矩阵求逆,1.将待求逆矩阵M,拆分成2x2的分块矩阵。2.将2x2的分块矩阵,利用舒尔补,拆成3个对角矩阵。3.求解矩阵M的逆,就等于3个对角矩阵的逆的乘积。

2022-11-22 08:23:24 39

原创 二维随机向量的数学期望E与协方差σ

二维随机向量的数学期望E与方差σ

2022-11-19 19:27:47 627

原创 期望E与高斯分布的期望

目录1. 期望定义2. 期望性质2.1 用期望定义方差 / 标准差方差定义标准差定义 方差的表示——离散型:方差的表示——连续型:方差的性质3. (一元)高斯分布定义4. (一元)高斯分布的性质参考 其中,第2条性质: E(EX) = EX:对变量X的期望再求期望,等于X的期望;同理,对 的期望再求期望,依然还是X的期望。期望有时还用 表示,即 或表示为 。设X为随机变量,若 (变量X减去自己的期望后的平方,再求期望)存在, 则称为随机变量X的方差,记作DX 或Var(X),即: 或者 或者表示为 ,

2022-11-19 12:42:13 307

转载 PL-VINS:实时基于点线的单目惯导SLAM系统

利用线特征来提高基于点特征的视觉惯性SLAM(VINS)的定位精度越来越重要,因为它们提供了结构化场景中规则性的额外约束,然而,实时性能一直没有得到关注。本文介绍了PL-VINS,一种基于实时优化的具有点和线的单目VINS方法,它是在最新的基于点的VINS Mono的基础上发展起来的。观察到目前的工作是使用LSD算法来提取直线,但是LSD是为场景的形状结构表示而设计的,而不是针对特定的姿态估计问题,由于其昂贵的成本成为实时性能的瓶颈。本文通过对隐参数调整和长度抑制策略的研究,提出了一种改进的LSD算法。

2022-10-08 15:00:28 196

原创 数学_四元数的求导详细推导

设设单位时间内,四元数发生了一个微小的变化,记作 . 因为采用单位四元数可表达任意三维旋转,且无奇异性;另外,四元数还可以用角轴两个变量进行表示,设角轴为 ω 和 θ,四元数和角轴的转换关系为: (6)所以,设初始旋转为 q = [s, v],那么 q 相对该旋转的导数为:TODO向量的点积, 向量的叉积,三角求导lim 近似公式

2022-10-02 09:24:12 770

转载 git命令_git stash

如果你想用更方便的方法来重新检验你储藏的变更,你可以运行 git stash branch,这会创建一个新的分支,检出你储藏工作时的所处的提交,重新应用你的工作,如果成功,将会丢弃储藏。今天在看一个bug,之前一个分支的版本是正常的,在新的分支上上加了很多日志没找到原因,希望回溯到之前的版本,确定下从哪个提交引入的问题,但是还不想把现在的修改提交,也不希望在Git上看到当前修改的版本(带有大量日志和调试信息)。命令时可以通过名字指定使用哪个stash,默认使用最近的stash(即stash@{0})。

2022-09-28 15:57:00 45

转载 SLAM算法-因子图建模

SLAM或者计算机视觉的问题目标是利用观察到的数据(图像,点云)来推理现实世界中的某些事情(全局状态),比如通过连续的视频帧推理相机的运动,比如通过3D点云数据推理机器人的移动状态(位置和姿态)。SLAM和计算机视觉都尝试描述一个用来解决此类问题的数学框架模型。解决此类问题需要三个要素:模型: 在数学上将数据和全局状态关联起来推理:根据数据,利用模型计算全局状态的后验概率学习:利用成对样本和状态,来学习模型参数。

2022-09-20 08:13:38 237

原创 概率图模型_马尔可夫随机场

马尔可夫随机场(MRF)是典型的马尔可夫网,不同于隐马尔可夫模型,MRF是一种无向图模型。图中每个结点表示一个或一组变量,结点之间的边表示两个变量的依赖关系。MRF有一组势函数,也可称为“因子”,这是定义在变量子集上的非负实函数,主要用于定义概率分布函数。

2022-09-17 15:23:28 592 5

原创 数学_矩阵向量求导公式相关

数学_矩阵向量求导公式相关

2022-09-12 11:50:53 1585

转载 数学_矩阵的泰勒展开公式

从一元函数 到 矩阵的泰勒展开公式

2022-09-12 07:06:16 1434

转载 Git创建本地分支并关联远程分支

介绍使用Git怎么创建本地分支并提交到远程,以及如何使新建本地分支与远程相关联。

2022-09-09 17:11:58 6322

转载 向量和矩阵的各种范数比较(1范数、2范数、无穷范数等等)

向量和矩阵的各种范数比较(1范数、2范数、无穷范数等等)

2022-09-08 18:03:13 2299 1

原创 多边形或轮廓等距离外扩或收缩

给定一个简单多边形,多边形按照顺时针或者逆时针的数许排列内部等距离缩小或者外部放大的多边形,实际上是由距离一系列平行已知多边形的边,并且距离为L的线段所构成的。

2022-08-17 23:11:12 410

原创 IMU标定_随机误差的标定

IMU标定 随机游走误差

2022-07-18 21:30:55 130

原创 SLAM_旋转运动学_两个坐标系速度v和加速度a的关系

惯性系(静止的那个)与body坐标系(运动的那个)之间的旋转矩阵记为 R_IB,则,两个坐标系下的速度,不是相差一个矩阵R_IB,而是还要加一个项 w x r_I, r_I为惯性系下的运动快的坐标。两个坐标系下的加速度,也不是相差一个矩阵R_IB,还有科氏力、欧拉力、离心力的影响。其中科氏力是制造加速度计的理论基础。...

2022-07-13 21:17:14 356

原创 环境配置篇

1.安装eigen3.3+ 版本,和sophus

2022-07-05 23:10:28 83

原创 SLAM中常用的雅克比矩阵J

1. 知识背景1.1 李群SE(3) 与 李代 SO(3)的转换关系2.常用的雅克比矩阵J2.1 旋转点的左扰动雅可比2.2旋转点的右扰动雅可比2.3旋转连乘的雅可比2.4旋转连乘的雅可比

2022-06-25 22:45:39 535

原创 三角变换公式

三角变换公式

2022-06-25 14:00:05 121 1

转载 CMakeLists中的add_definitions()函数

在我们更改别人代码做实验时使用,既不对其源码进行破坏,又可以添加自己的功能。之前都是在程序中进行#define,有了这个后可以直接在编译的时候进行选择。具体的,在工程CMakeLists.txt 中,使用add_definitions()函数控制代码的开启和关闭:......

2022-06-24 11:45:30 395 4

原创 用向量表示两个坐标系的变换

用向量表示两个坐标系的变换

2022-06-23 22:48:09 233

转载 CUDA编程入门极简教程

​2006年,NVIDIA公司发布了CUDA,CUDA是建立在NVIDIA的CPUs上的一个通用并行计算平台和编程模型,基于CUDA编程可以利用GPUs的并行计算引擎,来更加高效地解决比较复杂的计算难题。近年来,GPU最成功的一个应用就是深度学习领域,基于GPU的并行计算已经成为训练深度学习模型的标配。目前,最新的CUDA版本为CUDA 9。...

2022-06-22 09:25:31 1007

转载 VINS-Mono 代码详细解读4——feature_manager.cpp

vins-mono SLAM中estimator.cpp中关键函数为processImage(),里面包含了IMU预积分、图像处理特征点跟踪等一系列流程,上一节中对processIMU()以及预积分的integrationBase类进行解读,本节继续做基础储备,对与estimator.cpp中的feature_manager.cpp进行详细介绍,主要是对特征点管理。特征点管理器主要就是FeatureManager类​......

2022-06-22 09:22:01 189

原创 catkin屏蔽掉不想编译的package

catkin屏蔽掉不想编译的package; Packages "your-pkg-name" not found in the workspace

2022-06-15 17:34:31 204

转载 DBoW2库介绍

BoW(Bag of Words,词袋模型),是自然语言处理领域经常使用的一个概念。以文本为例,一篇文章可能有一万个词,其中可能只有500个不同的单词,每个词出现的次数各不相同。词袋就像一个个袋子,每个袋子里装着同样的词。这构成了一种文本的表示方式。这种表示方式不考虑文法以及词的顺序。在计算机视觉领域,图像通常以特征点及其特征描述来表达。如果把特征描述看做单词,那么就能构建出相应的词袋模型。这就是本文介绍的DBoW2库所做的工作。利用DBoW2库,图像可以方便地转化为一个低维的向量表示。比较两个图像的相似

2022-06-10 09:53:19 335 1

转载 命令行解析工具gflags详解(main函数参数/参数文件解析)

目录一、Gflags简介二、下载和安装三、用CMake声明flags之间的依赖关系四、定义flag五、flag变量六、在其他文件中调用flag变量七、完整性检查——RegisterFlagValidator八、flag与参数九、命令行设置flag十、更改flag默认值一、Gflags简介Gflags是一种命令行解析工具,主要用于解析用命令行执行可执行文件时传入的参数。与getops()不同的是,在gflags中flag可以分散的定义在各个文件之中,而不用定

2022-05-30 18:22:23 778

原创 ORB-SLAM3中的双目稀疏立体匹配

来源: 计算机视觉lifeGitHub链接:GitHub - electech6/ORB_SLAM3_detailed_comments: Detailed comments for ORB-SLAM3整体思路:目的:两帧图像稀疏立体匹配(即:ORB特征点匹配,非逐像素的密集匹配,但依然满足行对齐)输入:两帧立体矫正后的图像img_left 和 img_right 对应的orb特征点集输出:稀疏特征点视差图/深度图(亚像素精度)mvDepth 匹配结果 mvuRight过程:1.

2022-05-30 14:48:22 469

转载 Gerrit的commit-msg hook使用指南

Git hooks是Git提供的一种机制,这些hooks能够直接被git commit命令调用,无需开发人员手工设置。Gerrit提供的commit-msg hook,被调用时,可以自动根据模板编辑commit message,开发人员不必再手工输入commit message。1.commit-msg hook实现机制在Gerrit中,该hook实际上就是一个简短的Shell脚本实现。commit-msg hook可以接收一个文件名作为参数,该文件中包含写好的commit message,具

2022-05-18 22:04:09 852

转载 Ubuntu系统下Python的虚拟环境搭建方法简介:venv、virtualenv、pipenv

一、Python虚拟环境的作用及创建方法简介1.1 创建虚拟环境的必要性Python虚拟环境的作用:针对不同项目搭建独立的Python运行环境,防止与其他Python运行环境发生冲突。Python虚拟环境的优点:有助于Python包管理和维护。另外,便于卸载不需要的Python虚拟环境,最直接的方法就是直接删除存放Python虚拟环境的文件即可,实际操作起来十分方便。1.2 venv、virtualenv、pipenv三种创建虚拟环境方法比较1、搭建Python虚拟环境的方法创建Python

2022-05-17 22:18:15 1225

原创 线代_超定线性方程组最小二乘解推导

1. 超定线性方程组超定方程组,是指方程个数大于未知量个数的方程组。对于方程组A为m×n的矩阵,如果A列满秩,且m > n,则方程组没有精确解,此时称方程组为超定方程组。即任意x1 , x2 , … , xn 都不可能使2. 超定线性方程组的解例如,如果给定的三点不在一条直线上, 我们将无法得到这样一条直线,使得这条直线同时经过给定这三个点。 也就是说给定的条件(限制)过于严格, 导致解不存在。在实验数据处理和曲线拟合问题中,求解超定方程组非常普遍。比较常用的方法是最小二乘..

2022-05-02 18:29:34 849

原创 SLAM_BA中重投影误差e 关于相机位姿扰动量δξ 的雅克比矩阵J 公式推导

1. 问题定义在SLAM中,为了使用重投影误差 e 对相机的位姿 ξ (李代表示形式)进行优化,需要求重投影误差e关于相机位姿扰动量δξ (本文使用左乘扰动,参考SLAM十四讲7.7.3节)的雅克比矩阵J=。该公式在代码中(如G2O中)进行使用进行相机位姿的优化计算。结果如下,其中 表示相机坐标系下的三维坐标点。2. 推导过程当我们知道了一个3D空间点坐标和其对应的2D图像坐标时,重投影误差e,表示...

2022-04-28 16:45:47 2275

原创 何川L3管理课_模块5_给评价

目录第十三课:评价下属是管理者的基本责任1、评价管理的六点基本价值2、目标的作用3、评价管理的七组参考框架4、评价管理的六个操作步骤5、让每个下属都清楚评价标准6、知识点金句第十四课:正确理解绩效考核的设计原理1、深入理解绩效考核①什么是绩效管理?②什么是绩效评估?③绩效管理最关键的是持续改善。④绩效考核的三个基本理念⑤绩效考核的三个通用步骤2、KPI & OKRKPIOKR3、华为绩效能力九宫格4、知识点金句第十五..

2022-04-26 20:41:39 384

原创 何川L3管理课_模块4_成果管理

目录第十课:一切成果都存在于组织之外1、企业存在的唯一目的就是创造顾客2、密切关联:客户相关度和成果达标度3. 组织内部产生的只有人工和成本4、什么才是真正对下属好?5、管理者要持续思考:什么是真实有效的贡献?6、知识点金句第十一课:专注于抓住机会而不是解决问题1、大部分问题都与成果无关2、区分管理&经营3、把资源集中在关键机会上4、知识点金句第十二课:反复共享与成果有关的标准1、为成果建立标准2、影响成果的标准(非常重要)3、知识点.

2022-04-25 21:24:45 510

原创 何川L3管理课_模块3_追进展(执行)

目录第七课:管理就是做好一系列决策1、让团队始终明白什么是最重要的。2、区分组织决策和管理决策。3、没有完美的决策。4、为什么做不出决策?做出有效决策的5个步骤5、知识点金句第八课:管理就是把人和事做到充分结合1、管人&管事2、用人所长3、管事的同时关心和激励人4、知识点金句5、新任主管每日清单第九课:管理就是面对事实解决问题1、复盘工作多谈实际差距2、分析问题坚持定量思维。3、日常管理要重复 7 个问题。4、讲原因x, 找差距..

2022-04-24 20:00:02 464

原创 何川L3管理课_模块2_做计划

目录第四课:制定工作计划的关键是配置资源1、计划管理是最被低估的管理能力2、管理的逻辑3、成为管理者的第一项能力,就是制定计划的能力4、制定工作计划的关键是消除资源差距5、知识点金句6、易混知识点第五课:自上而下确保计划的有效性1、目标要获得上司的确认和支持。2、全面评估资源和目标的差距。3、职能服务部门如何制定工作计划。5、知识点金句6、向上司争取资源的正确步骤是什么?7、上司的时间是最被低估的资源第六课:让一线团队充分使用资源1、一线员工需

2022-04-23 16:47:04 548

原创 何川L3管理课_模块1_定目标

目录第一课:一切管理都要围绕目标展开1. 目标三要素2. 目标的本质是一种评价3. 战略管理、计划管理、流程管理、组织管理分别重点管什么?4. 管理的整体逻辑是什么?5. 定目标和表达目标是两回事6. 知识点金句第二课:区分经营型目标和管理型目标1. 经营型目标和管理型目标的区别2. 上级定不出目标,怎么办?3. 不同层级的管理者主要负责什么?4. 管理能力不能超越经营能力5. 案例:日常管理经常顾此失彼,该怎么办 ?6. 知识点金句 (重点,建议背诵

2022-04-22 10:02:37 818

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除