- 博客(636)
- 收藏
- 关注
原创 深度图补全-depth inpainting
Deep Depth Completion of a single RGB-D Image状态:开源,pytorch,matlab,C++下载地址: https://github.com/yindaz/DeepCompletionRelease思路:目前效果最好(截止至2019. 06),耗时长。使用rgb image作为输入预测物体表面稠密法线及遮挡区域的边缘信息。使用这些预测结果与原始的depth图像结合,通过全局优化,对原始图像中像素缺失问题进行解决。由于现有数据集中ground trut
2020-10-31 21:30:15 4316 1
原创 论文笔记总结_S2D_从稀疏到稠密
1.2018-ICRA_稀疏到稠密:从稀疏深度样本+单一图像的深度预测以下4篇为传统方法:2. 2013-CVPR-结合三维场景重建和类别分割3. 2010-BMVC-目标类别分割和稠密立体重建的联合优化4.2011-CVPR-对象立体化-联合立体匹配与对象分割5.2012-ECCV-从立体图像中提取与场景一致的三维对象和深6.2018-BMVC-用于实时语义分割的轻量级精细网络RefineNet7.2017-CVPR-RefineNet: 用于高分辨率语义分割的多路径...
2020-10-23 16:42:03 1496 4
原创 前端_安裝 json server
4. (可选) 可能无法运行node.js,提示“npm : 无法加载文件 D:\Program Files\nodejs\npm.ps1,因为在此系统上禁止运行脚本。”, 此时,执行如下命令后,再次执行install即可。要更改执行策略,你可以使用 Set-ExecutionPolicy 命令。你也可以使用 -Scope Machine 来为所有用户更改策略,但这通常需要更高的权限。当GET时,是请求数据,当POST时,是创建数据,当PUT时是更新,DELETE是删除。显示如下内容,说明安装成功。
2024-10-31 23:25:31 233
原创 node.js_npm : 无法加载文件 D:\Program Files\nodejs\npm.ps1
如果你对 PowerShell 的执行策略感到不安,你也可以考虑使用其他命令行工具,如 CMD 或 Git Bash,来运行。更改执行策略可能会使你的系统更容易受到恶意脚本的攻击。确保你信任要运行的脚本,并考虑在不需要时恢复更严格的执行策略。PowerShell 的执行策略是一种安全功能,用于限制哪些脚本可以运行,以防止恶意脚本的执行。更改执行策略后,你需要关闭并重新打开 PowerShell 窗口,以使更改生效。但是,请注意,这样做可能会降低系统的安全性。来为所有用户更改策略,但这通常需要更高的权限。
2024-10-31 23:20:07 437
原创 linux_电脑一运行程序就死机怎么处理?
如果以上方法都无法解决问题,那么最后一步就是寻求专业人士的帮助。可以联系Linux系统维护者、系统管理员或其他技术支持人员来解决系统死机问题。综上所述,解决Linux电脑在运行程序时死机的问题需要综合考虑硬件和软件因素,并使用适当的工具和方法进行诊断和修复。
2024-10-29 21:30:00 574
原创 读书笔记_《组织行为学》
组织行为学》组织行为学的内容主要包括个体行为、群体行为和组织行为。具体来说,个体行为包括个体的个性与能力、价值观与态度,、情绪与压力等方面,群体行为包括领导、激励、沟通、冲突等方面,组织行为包括组织结构、组织文化,组织变革等方面。
2024-10-04 20:06:20 1223
原创 C++_unique_ptr_一个类Frame的普通指针fr初始化一个unique_ptr, 这个普通指针还有管理权吗?
一旦接管了普通指针指向的对象,普通指针将不再拥有管理权。在转移所有权后,避免使用普通指针来操作该对象,尤其是不要手动调用delete,以防止内存管理问题。
2024-10-01 22:45:00 1293
原创 linux_终端输入_几个提高效率的超有用配置
打开 /etc/inputrc 文件,搜索关键字 history-search,如图,删除这两行前面的#,退出保存,再重新登录terminal即可。另外,删除这两行前面的#,在退出保存前,可将“只输入一条历史命令的前几个字母,再按PageUp和PageDown键,就可以在以此字母为前缀的历史命令中上下切换。Google上搜索才直到,这个只是linux在终端对键盘的映射而已,和linux的某个发行版无关。”更改为“A”,将“6~”更改为“B”,然后再退出保存,重新登录terminal。
2024-09-12 21:30:00 297
原创 SLAM_极线搜索最佳匹配特征点_NCC
极线搜索,进行特征匹配: 根据初始参考图中参考点pt_ref的深度和深度方差图, 求得空间3D点的最远和最近两个坐标, 将其投影到当前cur图像平面, 得到当前图像平面的极线表示形式(使用极线方向 + 极线长度的组合表示), 然后遍历极线区间, 则极线上的像素点为候选匹配点, 使用NCC的方法, 计算最大的NCC得分, 得到当前图像的最佳匹配.对于每个候选点(curr), 计算与当前的参考点(ref)的相似度(相关性), 即求当前像素5*5临域像素灰度之间的相似度 (去平均值处理)
2024-08-30 23:30:00 191
原创 python_根据时间戳对坐标进行线性插值
1. 需求一numpy数组A中存储一个二维数组,每一行为三个元素(timestamp, x,y), 有100行这样的元素, 另一个numpy数值B中同样存储这样的二维数组,每一行为元素(timestamp1, x1,y1),根据B中的时间戳对A元素进行线性插值处理,得到A的插值及结果二维数组C, C中时间戳与B中一致, C中x,y结果为根据B中时间戳对A的x,y进行差值计算的结果2. 实现可以使用NumPy和SciPy库中的interp函数来对数据进行线性插值。np.interp。
2024-08-27 22:30:00 372 1
原创 SLAM_三角化计算像素点深度_给2个匹配点+相对位姿_克莱默法则_SLAM十四讲13章公式推导_单目稠密重建
在求得深度标量值之后, 又乘以了对应的单位方向向量, (Vector3d xm = lambdavec ( 0,0 ) * f_ref;注意, 代码中, 相对像素点在相机坐标系下的三维坐标进行了归一化, 归一化成单位向量 (f_ref.normalize();其中, fr fc为两个特征点在各自相机坐标系下的归一化坐标, Rrc, t为从相机坐标系cur到相机坐标系ref的相对位姿.其中, x1 x2为两个特征点在各自相机坐标系下的归一化坐标, R, t为从相机坐标系1到相机坐标系2的相对位姿.
2024-08-24 16:33:30 122
原创 添加Sophus库时CMake找不到Sophus的问题
Sophus库文件, Could not find a package configuration file provided by "Sophus" with any of the following names: SophusConfig.cmake sophus-config.cmake
2024-08-12 22:30:00 102
原创 C++_#pragma GCC visibility pop 什么意思
是一种特定的编译器指令(pragma),用于GNU GCC(GNU Compiler Collection)和其他兼容GCC的编译器中,以。这在复杂的项目中特别有用,当你需要在代码的某个部分改变符号的可见性,但又不想影响到其他部分时。例如,如果你正在编写一个库,并希望隐藏大多数内部符号,但想要临时暴露一些特定的函数或变量,你可以使用。这些值控制了符号在共享库中的可见性,即它们是否可以被库外部的代码看到和链接。将是可见的,即使它们都位于同一个源文件或库中。来管理这些更改,而不会影响库的其他部分。
2024-08-10 22:15:00 326
原创 视觉vslam建图_目前面临的主要问题和解决方案
视觉SLAM(Simultaneous Localization and Mapping,)是机器人和计算机视觉领域中的一个重要技术,主要通过相机捕捉环境图像进行定位和地图构建。
2024-08-09 23:15:00 153
原创 linux_top命令打印结果_PID USER PR NI VIRT RES SHR S 什么意思
这些列提供了关于系统中各个进程的详细信息,有助于你了解哪些进程正在使用系统资源,以及它们的运行状态。命令是 Linux 和 Unix 系统中用于实时显示系统中各个进程的资源占用情况的工具。命令,你可以实时地监控这些信息的变化,并对系统进行相应的调整和优化。命令并查看输出结果时,会看到类似下面的列(具体的列可能因。
2024-07-25 22:15:00 772
原创 c++_文件解析_读取_每行用字符分割_去除两头空格
c++ 读取一个文件, 逐行读取, 每行使用 冒号分割,然后使用空格分割 找到一行中的每一个元素, 不包含前后两头的空格作为返回元素。
2024-07-12 23:15:00 445
原创 C语言_将多个标志位保存到一个char里
首先,为每个标志位定义一个位掩码(bit mask)。位掩码是一个整数,其只有一个二进制位为1(代表你的标志位),其他位都是0。
2024-07-10 22:30:00 456
原创 c_各个unsigned int 和 int的取值范围
类型比特位数取值范围bool1true和falseuint8_t80 到 255uint16_t160 到 65,535uint32_t320 到 4,294,967,295uint64_t640 到 18,446,744,073,709,551,615int8_t8-128 到 127int16_t16-32,768 到 32,767int32_t32-2,147,483,648 到 2,147,483,647int64_t64。
2024-07-06 23:00:00 1901
原创 c++将一个复杂的结构体_保存成二进制文件并读取
在 C++ 中,可以将复杂的结构体保存到二进制文件中,并从二进制文件中读取它。为了实现这一点,你可以使用文件流库。以下是一个示例,展示如何将一个复杂的结构体保存到二进制文件中,并从二进制文件中读取它。
2024-07-02 22:00:00 589
原创 python_时间戳对齐
python 有2个保存时间戳的list, listA 和 listB, 对于listA中的每一个时间戳元素cur_ts, 查找listB中 与cur_ts最接近的前后两个时间戳元素。
2024-06-28 22:30:00 511
原创 读书笔记_《定位》_顾均辉&艾里斯
一根油条是饥饿经济,满汉全席是饱和经济。在饱和经济时代,拼的不在仅仅是质量,而是拼在用户心中的心智的建立。打赢商战不是靠产品,而是靠。好的名字等于成功的一半,名称的字数2优于3,优于四。心智只会记住大脑里已有的品牌。财富是一个人认知的变现。理念能催生方法,方法本身是无穷无尽的。。。这个世界没有真相,没有事实,没有客观,只有认知,只有主观。。如何快速的进入消费者的心智呢?第一步,输入一个简单易记的概念,第二步,提炼的表达,把它传播出去,第三步,传播的信息,让他时常出现在客户心智中。
2024-06-15 22:15:00 1248
原创 边缘计算(Edge Computing)_关键概念/优势/应用场景
边缘计算(Edge Computing)是一种计算范式,它将数据处理和分析从传统的集中式数据中心和云计算平台移至更接近数据生成源头的位置(即“边缘”),例如物联网设备、传感器、路由器或其他边缘设备。边缘计算旨在通过在数据生成的源头附近进行处理和存储,减少数据传输的延迟,提高实时性和带宽利用率。
2024-06-13 22:45:00 1262
原创 C++_如何改变std::tuple中元素的值,即使是const?
第三方库库函数,使用了 const std::tuple 作为参数, 当需要改变这里tuple中元素的值, 这么办?答: 使用引用传参数,如何使用引用呢?见如下代码?
2024-06-06 22:30:00 498
原创 定位技术_RFID(Radio Frequency Identification)和UWB(Ultra-Wideband)区别、联系
RFID(Radio Frequency Identification)和UWB(Ultra-Wideband)都是无线通信技术,用于定位和跟踪,但它们在工作原理、应用场景、性能和特点等方面有显著区别。
2024-05-20 22:45:00 897
原创 Linux_清空系统缓冲和无用文件命令
无用文件通常指的是系统中的临时文件、日志文件、以及用户不再需要的文件。文件系统来清理系统缓存(包括页缓存、目录项缓存和inode缓存)。在 Linux 中,可以通过。也可以使用日志旋转工具如。
2024-05-17 20:45:00 822
原创 读书笔记_《天幕红尘》_精华部分摘录
认知的三个维度:边见有二、去二归一、去二不着一,这三个维度是依次递进的关系。边见:偏见于一边的恶见,如盲人摸象,占在一个立场看问题。认知第一维度:边见有二。“边见”是佛教用语,边见:是偏于一边的恶见,也就是。持“常”或“断”的观点。可以理解为偏见、执念。就如叶子农关于“场”的论述一样,。犹如盲人摸象,站位事物的一个局部去判断全局。可以说绝大部分人都处于这个认知维度。认知第二维度:去二归一。
2024-05-02 18:45:45 1447 1
原创 CUDA_cudaFree_释放Stream_cudaError_t 错误类型码解释
官方网站 :CUDA Runtime API :: CUDA Toolkit Documentation 是 CUDA 中用于释放由 或 分配的设备内存的函数。它的参数是一个指向设备内存的指针,用于指示要释放的内存块的起始地址。用法说明如下:参数 是一个指向要释放的设备内存块的指针。这个指针必须是由 、 或类似函数返回的指针,指向通过 CUDA 运行时 API 分配的内存。如果 是 ,则 会忽略并返回 。通常情况下, 应该在不再需要设备内存时被调用,以释放之前通过 CUDA 运行时 API 分配的
2024-04-20 10:14:21 1260
原创 python_表格处理_pandas_pd.read_csv输入输出参数说明
函数用于从 CSV 文件中读取数据,并返回一个 DataFrame 对象。sep\theader0Nonenamesindex_colNoneskiprowsNoneskipfooter0nrowsNonedtypeFalseTruena_valuesNoneencodingNonedtypeNone以上只是部分常用的参数,还有更多的参数用于处理不同的情况。你可以查阅 Pandas 文档或者使用命令来查看完整的参数列表和详细说明。
2024-04-19 20:45:00 1277
原创 linux_查看系统硬件/软件信息_命令汇总
在Linux系统中,你可以使用一些命令来查看系统硬件信息。这些命令通常需要在终端或命令行中执行,并且有些可能需要root权限才能运行。
2024-04-12 21:45:00 743
原创 机器学习_XGBoost模型_用C++推理示例Demo
将 python 训练好的 xgboost 模型, 使用C++ 进行加载并进行推理(预测)
2024-04-11 23:30:00 814
原创 XGBoost源码结构简介
XGBoost 是一个开源的机器学习库,它是用C++实现的,提供了高效的梯度提升决策树(GBDT)和随机森林算法。XGBoost源码结构清晰,模块化设计,方便理解和扩展。如果你想深入了解XGBoost的实现细节,建议阅读源码并参考官方文档。
2024-04-10 22:30:00 408
原创 图像处理_积分图
积分图算法是图像处理中的经典算法之一,由Crow在1984年首次提出,它是为了在多尺度透视投影中提高渲染速度。积分图算法是一种和以及图像区域平方和的算法。直白的说,就是很快计算一幅图像任意区域,也就是跟平方和。它的核心思想就是对每一个图像建立起自己的积分图查找表,在图像处理的阶段就可以,从而实现对均值卷积的线性时间计算。做到了卷积执行的时间与半径窗口大小的无关联。利用积分图可以极大地加快计算原始图像中任一矩形区域的像素和,因为只需经过一次计算。
2024-03-31 18:18:13 1513
原创 评价指标_Precision(精确率)、Recall(召回率)和Accuracy(准确率)区别和联系
在实际应用中,需要根据具体的任务需求来选择使用哪种评价指标。如果任务更注重在预测为正例的样本中保持高的准确性,那么应该关注精确率;如果任务更注重找出所有真正为正例的样本,那么应该关注召回率;如果任务要求整体的预测准确性,那么应该关注准确率。Precision(精确率)、Recall(召回率)和Accuracy(准确率)是机器学习和信息检索领域常用的评价指标,它们用于评估分类器或检索系统的性能,但各自关注的方面略有不同。
2024-03-31 12:30:41 1745
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人