容器源码分析

主要内容

        哈希表

        HashMap源码分析

        TreeMap源码分析

        HashSet源码分析

        TreeSet源码分析

学习目标

知识点要求
哈希表掌握
HashMap源码分析掌握
TreeMap源码分析掌握
HashSet源码分析掌握
TreeSet源码分析掌握

一、哈希表

1.引入hash表

在无序数组中按照内容查找,效率低下,时间复杂度是O(n)

 在有序数组中按照内容查找,可以使用折半查找,时间复杂度O(log2n)

问题:按照内容查找,能否也不进行比较,而是通过计算得到地址,实现类似数组按照索引查询的高效率呢O(1)

有!!!哈希表来实现

2.哈希表的结构特点

hash表 也叫散列表;特点:快

 3.哈希表是如何添加数据

  1. 计算哈希码(调用hashCode(),结果是一个int值,整数的哈希码取自身即可)

  2. 计算在哈希表中的存储位置 y=k(x)=x%11

    x:哈希码 k(x) 函数y:在哈希表中的存储位置

  3. 存入哈希表

    情况1:一次添加成功

    情况2:多次添加成功(出现了冲突,调用equals()和对应链表的元素进行比较,比较到最后,结果都是false,创建新节点,存储数据,并加入链表末尾)

    情况3:不添加(出现了冲突,调用equals()和对应链表的元素进行比较, 经过一次或者多次比较后,结果是true,表明重复,不添加)

  4. 结论1:哈希表添加数据快(3步即可,不考虑冲突)

  5. 结论2:唯一、无序

 

 4.哈希表更多

1.如何查询数据

添加数据的过程是相同的

情况1:一次找到 23

情况2:多次找到 67

结论:哈希表查询数据快

2.hashCode和equals有什么用

hashCode(): 计算哈希码,是一个整数,根据哈希码可以计算出数据在哈希表中的存储位置

equals():添加时出现了冲突,需要通过equals进行比较,判断是否相同;查询时也需要使用equals进行比较,判断是否相同

可能会出现的问题:原内容不一样,经过hash计算后得到的结果一样的,这种情况称为hash碰撞。

String类型中的hashcode()方法。算法中数字31称为hash因子。定义hash因子时尽量选择一个靠近2的n次方的一个质数。可以在一定程度上减少hash碰撞。最后选择了一个不大,不小的hash因子31.

public static int hashCode(byte[] value) {
  int h = 0;
  for (byte v : value) {
    h = 31 * h + (v & 0xff);
  }
  return h;
}

5.解决哈希碰撞的方法

1.开放定址法

当发生冲突时,通过一定的规则找到下一个可用的位置,并将键值对存储在该位置上。开放地址法的具体实现方式有线性探测,二次探测和双重散列等。

1.线性探测

线性探测是一种简单的开放地址实现方式。当冲突时,线性探测会依次向后寻找下一个位置,直到找到一个空闲的位置为止。这种方法的优点是实现简单,缺点是容易产生聚集现象,即连续的位置上存储了大量的键值对。

2.二次探测

二次探测是一种改进的开放性地址法实现方法。当发生冲突时,二次探测会使用相关的函数来计算下一个位置,以减少聚集现象的发生。

3.双重散列

双重散列是一种更加高效的开放地址法的实现方式。它使用两个不同的hash函数计算下一位置,以减少冲突的概率。

2.再哈希法

再哈希法是一种比较简单解决哈希冲突的方法,通过多次哈希函数计算,直到找到一个空闲的位置为止。

3.链地址法(hashmap就是这样处理的)

Hash表的每个单元作为链表的头节点。当发生冲突时放入到同一个hash值对应的链表中。

链地址法实现简单,不会产生聚集现象,单链表过程时,会导致查找效率降低。为了解决这个问题,可以采用红黑树代替链表,以提高查找效率。

 4.建立溢出区

将哈希表分为基础表和溢出表两部分,凡是和基本表发生冲突的key存储到溢出表中,公共的溢出区使用链表解决冲突。

6.装填因子/加载因子/负载因子

哈希表的长度和表中的记录数的比例--装填因子:

如果Hash表的空间远远大于最后实际存储的记录个数,则造成了很大的空间浪费,如果选取小了的话,则容易造成冲突。在实际情况中,一般需要根据最终记录存储个数和关键子的分布特点来确定Hash表的大小。还有一种情况是可能事先不知道最终需要存储的记录个数,则需要动态维护Hash表的含量,此时可能需要重新计算Hash地址。

如果装填因子越小,表明表中还有很多的空单元。则添加发生冲突的可能性越小;而装填因子越大,则发生冲突的可能性就越大,在查找时所耗费的时间就越多。

二、HashMap底层源码分析(JDK1.7及以前)

1.结构介绍

JDK1.7及其以前,HashMap底层是一个数组+链表实现的哈希表存储结构,使用头插。

 链表的每个节点就是一个Entry,其中包括:键key、值value、键的哈希码hash、执行下一个节点的引用next四部分。

static class Entry<K, V> implements Map.Entry<K, V> {
    final K key; //key
    V value;//value
    Entry<K, V> next; //指向下一个节点的指针
    int hash;//哈希码
}

 2.内部成员变量含义

JDK1.7中HashMap的主要成员变量及其含义

public class HashMap<K, V> implements Map<K, V> {
//哈希表主数组的默认长度
    static final int DEFAULT_INITIAL_CAPACITY = 16; 
//默认的装填因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f; 
//主数组的引用!!!!
    transient Entry<K, V>[] table; 
    int threshold;//界限值  阈值
    final float loadFactor;//装填因子
    public HashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
    }
}

3.put()方法

调用put方法添加键值对。哈希表三步添加数据原理的具体实现;是计算key的哈希码,和value无关。特别注意:

  1. 第一步计算哈希码时,不仅调用了key的hashCode(),还进行了更复杂处理,目的是尽量保证不同的key尽量得到不同的哈希码

  2. 第二步根据哈希码计算存储位置时,使用了位运算提高效率。同时也要求主数组长度必须是2的幂

  3. 第三步添加Entry时添加到链表的第一个位置,而不是链表末尾

  4. 第四步添加Entry是发现了相同的key已经存在,就使用新的value替代旧的value,并且返回旧的value

/*hashCode()方法可以计算HashMap值(整数数字)
*
* Object中的hashCode()方法根据变量在内存中的地址进行计算,返回hash值。
* 重写后的HashCode()方法会根据属性值计算hash值,属性值相同,hash值相同。
* 注意:
*   hash冲突,不同的值计算出的hash值是相同的。
*/
public class HashMap {
    public V put(K key, V value) {
       //如果key是null,特殊处理
        if (key == null) return putForNullKey(value);
        //1.计算key的哈希码hash 
        int hash = hash(key);
        //2.将哈希码代入函数,计算出存储位置  y= x%16;
        int i = indexFor(hash, table.length);
        //如果已经存在链表,判断是否存在该key,需要用到equals()
        
        
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            //如找到了,使用新value覆盖旧的value,返回旧value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { 
                    V oldValue = e.value;// the United States
                    e.value = value;//America
                    e.recordAccess(this);
                    return oldValue;
                }
            }
            //添加一个结点
            addEntry(hash, key, value, i);
            return null;
        }
final int hash(Object k) {
    int h = 0;
    h ^= k.hashCode();
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}
static int indexFor(int h, int length) {
//作用就相当于y = x%16,采用了位运算,效率更高
    return h & (length-1);
 }
}

4.addEntry()方法

添加元素时如达到了阈值,需要扩容,每次扩容为原来主数组容量的2倍

void addEntry(int hash, K key, V value, int bucketIndex) {
    //如果达到了门槛值,就扩容,容量为原来容量的2倍 16---32
    if ((size >= threshold) && (null != table[bucketIndex])) {
        resize(2 * table.length);
        hash = (null != key) ? hash(key) : 0;
        bucketIndex = indexFor(hash, table.length);
    }
    //添加节点
    createEntry(hash, key, value, bucketIndex);
}

5.get()方法

调用get方法根据key获取value。

哈希表三步查询数据原理的具体实现。

其实是根据key找Entry,再从Entry中获取value即可

public V get(Object key) {
    //根据key找到Entry(Entry中有key和value)
    Entry<K,V> entry = getEntry(key);
    //如果entry== null,返回null,否则返回value
    return null == entry ? null : entry.getValue();
}

三、HashMap底层源码分析(JDK1.8及以后)

        在JDK1.8中有一些变化,当链表的存储数据个数大于等于8的时候,不再采用链表存储,而采用红黑树存储结构。这么做主要是查询的时间复杂度上,链表为O(n),而红黑树一直是O(logn)。如果冲突多,并且超过8长度小于6 会自动转成链表结构,采用红黑树来提高效率

 1.基本属性

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {
  //序列化和反序列化时使用相同的id
  private static final long serialVersionUID = 362498820763181265L;
  //初始化容量
  static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
  //最大容量
  static final int MAXIMUM_CAPACITY = 1 << 30;
  //默认负载因子
  static final float DEFAULT_LOAD_FACTOR = 0.75f;
  //树形阈值
  static final int TREEIFY_THRESHOLD = 8;
  //取消阈值
  static final int UNTREEIFY_THRESHOLD = 6;
  //最小树形容量
  static final int MIN_TREEIFY_CAPACITY = 64;
  //节点数组
  transient Node<K,V>[] table;
  //存储键值对的个数
  transient int size;
  //散列表被修改的次数(添加 | 删除)
  transient int modCount; 
  //扩容临界值
  int threshold;
  //负载因子
  final float loadFactor;
}

2.构造方法

//和1.7区别不大
//无参构造器,加载因子默认为0.75
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
}
//指定容量大小的构造器,但调用了双参的构造器,加载因子0.75
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//全参构造器
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    //HashMap 的最大容量只能是 MAXIMUM_CAPACITY,哪怕传入的数值大于最大容量,也按照最大容量赋值
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    //加载因子必须大于0
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    //设置扩容阈值和1.7类似,目前该阈值不是正真的阈值
    this.threshold = tableSizeFor(initialCapacity);
}
//将传入的子Map中的全部元素逐个添加到HashMap中
public HashMap(Map<? extends K, ? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
}

3.Node节点

前 1.7 是 Entry 结点,1.8 则是 Node 结点,其实相差不大,因为都是实现了 Map.Entry (Map 接口中的 Entry 接口)接口,即,实现了 getKey() , getValue() , equals(Object o )和 hashCode() 等方法;

static class Node<K,V> implements Map.Entry<K,V> {
    //hash 值
    final int hash;
    //键
    final K key;
    //值
    V value;
    //后继,链表下一个结点
    Node<K,V> next;
    //全参构造器
    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
    //返回与此项对应的键
    public final K getKey()        { return key; }
    //返回与此项对应的值
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }
    //hash 值
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }
    // 实现接口定义的方法,且该方法不可被重写
        // 设值,返回旧值
    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
    //判断2个Entry是否相等,必须key和value都相等,才返回true  
    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}

4.添加键值对

1.put()方法

//添加键值对
public V put(K key, V value) {
  /*
   *参数一: 调用hash()方法
   *参数二: 键
   *参数三: 值
   **/
  return putVal(hash(key), key, value, false, true);
}

2.hash()方法

static final int hash(Object key) {
  int h;
  //hashCode和h移位右移16位进行按位异或运算
  return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

3.putVal()方法

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
    //申明tab 和 p 用于操作原数组和结点
    Node<K,V>[] tab; Node<K,V> p;
    int n, i;
    //如果原数组是空或者原数组的长度等于0,那么通过resize()方法进行创建初始化
    if ((tab = table) == null || (n = tab.length) == 0)
        //获取到创建后数组的长度n
        n = (tab = resize()).length;

    //通过key的hash值和 数组长度-1 计算出存储元素结点的数组中位置(和1.7一样)
    //并且,如果该位置为空时,则直接创建元素结点赋值给该位置,后继元素结点为null
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        //否则,说明该位置存在元素
        Node<K,V> e; K k;
        //判断table[i]的元素的key是否与添加的key相同,若相同则直接用新value覆盖旧value
        if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
            //判断是否是红黑树的结点,如果是,那么就直接在树中添加或者更新键值对
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //否则,就是链表,则在链表中添加或替换
        else {
            //遍历table[i],并判断添加的key是否已经存在,和之前判断一样,hash和equals
            //遍历完毕后仍无发现上述情况,则直接在链表尾部插入数据
            for (int binCount = 0; ; ++binCount) {
                //如果遍历的下一个结点为空,那么直接插入
                //该方法是尾插法(与1.7不同)
                //将p的next赋值给e进行以下判断
                if ((e = p.next) == null) {
                    //直接创建新结点连接在上一个结点的后继上
                    p.next = newNode(hash, key, value, null);
				//如果插入结点后,链表的结点数大于等7(8-1,即大于8)时,则进行红黑树的转换
				//注意:不仅仅是链表大于8,并且会在treeifyBin方法中判断数组是否为空或数组长度是否小于64
				//如果小于64则进行扩容,并且不是直接转换为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    //完成后直接退出循环
                    break;
                }
                //不退出循环时,则判断两个元素的key是否相同
                //若相同,则直接退出循环,进行下面替换的操作
                if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                //否则,让p指向下一个元素结点
                p = e;
            }
        }
        //接着上面的第二个break,如果e不为空,直接用新value覆盖旧value并且返回旧value
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    //添加成功后,判断实际存在的键值对数量size是否大于扩容阈值threshold(第一次时为12)
    if (++size > threshold)
        //若大于,扩容
        resize();
    //添加成功时会调用的方法(默认实现为空)
    afterNodeInsertion(evict);
    return null;
}

4.resize()方法  //扩容

//该函数有两种使用情况:初始化哈希表或前数组容量过小,需要扩容
final Node<K,V>[] resize() {
    //获取原数组
    Node<K,V>[] oldTab = table;
    //获取到原数组的容量oldCap
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    //获取原扩容阈值
    int oldThr = threshold;
    //新的容量和阈值目前都为0
    int newCap, newThr = 0;
    if (oldCap > 0) {
        //如果原数组容量大于等于最大容量,那么不再扩容
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        //而没有超过最大容量,那么扩容为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            //扩容为原2倍
            newThr = oldThr << 1; // double threshold
    }
    //经过上面的if,那么这步为初始化容量(使用有参构造器的初始化)
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        //否则,使用的无参构造器
        //那么,容量为16,阈值为12(0.75*16)
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    //计算新的resize的上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    //使用新的容量床架一个新的数组
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    //将新的数组引用赋值给table
    table = newTab;
    //如果原数组不为空,那么就进行元素的移动
    if (oldTab != null) {
        //遍历原数组中的每个位置的元素
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                //如果该位置元素不为空,那么上一步获取元素接着置为空
                oldTab[j] = null;
                //判断该元素上是否有链表
                if (e.next == null)
                    //如果无链表,确定元素存放位置,
                    //扩容前的元素位置为 (oldCap - 1) & e.hash ,所以这里的新的位置只有两种可能:1.位置不变,
                    //2.变为 原来的位置+oldCap,下面会详细介绍
                    newTab[e.hash & (newCap - 1)] = e;
                //判断是否是树结点,如果是则执行树的操作
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    //否则,说明该元素上存在链表,那么进行元素的移动
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    //通过loHead和hiHead来保存链表的头结点,然后将两个头结点放到newTab[j]与newTab[j+oldCap]上面去
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值