04_神经网络之感知器

在这里插入图片描述


博文配套视频课程:24小时实现从零到AI人工智能


感知器(最简单神经网络)

感知器是人工神经网络中的一种典型结构, 它的主要的特点是结构简单,对所能解决的问题 存在着收敛算法,并能从数学上严格证明,从而对神经网络研究起了重要的推动作用。

  1. 感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是-1和­1,属于判别模型
  2. 感知器是向量机算法,神经网络的鼻祖,我们将要讲的深度神经网络,就是感知器算法的叠加
  3. 感知器也是采用线性回归模型算法,运算的过程就是不断求权重与偏置过程 y’ = w1x1 + w2x2 … + b

在这里插入图片描述

线性不可分

线性可分类情况
在这里插入图片描述

线性不可分类情况
在这里插入图片描述

Sigmoid

Sigmoid函数是一个在生物学中常见的S型函数,也称为S型生长曲线。在信息科学中,由于其单增以及反函数单增等性质,Sigmoid函数常被用作神经网络的阈值函数,将变量映射到0,1之间

在这里插入图片描述

Sign激活函数

引入激活函数是为了增加神经网络模型的非线性,没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘罢了,Sign(x) 是最简单的二分类激活函数。

  1. 当x>0,sign(x)=1
  2. 当x=0,sign(x)=0
  3. 当x<0, sign(x)=-1

案例演示

# 对矩阵和张量处理的api
import numpy as np
import matplotlib.pyplot as plt
# Sign(x) 是最简单的二分类激活函
x = np.arange(-5.0, 5.0, 0.1)
y = np.sign(x)
plt.plot(x,y)
plt.show()

# sigmoid(x)
y = 1/(1+np.exp(-x))
plt.plot(x,y)
plt.show()

感知器处理二分类问题

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值