博文配套视频课程:人工智能、区块链、物联网、云计算(1课四通免费课程)
云计算概念
云计算时一种按使用量付费的模式,这种模式可以提供可用的、便捷的、按需的网络访问 (进入可配置的资源共享池),资源包括:网络、服务器、存储、应用软件、服务。这些资源能够快速提供,只需要投入很少的管理工作。
资源整合,弹性按需分配
- 自家挑水
- 集资打井
- 水电厂 (抽水、过滤、水管)
前现阶段的云计算已经不单单是一种分布式计算了,包括:计算、存储、负载均衡、虚拟化等计算机技术混合演化并跃的一种结果。
云产生背景
-
管理者角度 (考虑成本):服务器数量庞大、重复购买严重,能耗高,利用率低,仅20%
解决方案:通过资源利用,减少购买数量,同时资源还可以即用即放,通过虚拟化技术,实现资源复用 (CPU/内存/硬盘/网络),提高资源
利用效率 (70%~80%) -
业务人员:硬盘更新淘汰块,业务上线周期长,业务容量和压力大 (例如:购票系统)、上线周期慢肯定会影响业务
解决方案:随着业务增加,灵活分配增加云主机资源,避免较长的采购周期,申请立即使用,根据业务容量和压力大,弹性伸缩主机资源 -
运维效率比较低,可可靠性差,信息系统分散,资源缺乏集中管控
解决方案:信息系统集中建设,统一管理主机资源,虚拟资源。
云四种模式
- 私有云:企业利用自有或租用的基础设施资源自建的云
- 社区云:行业云、银行、电商、为特定社区或者行业所构建基础设施的云
- 公有云:出租给公众的大型基础设施云
- 混合云:由两种或者两种以上部署模式组成的云
云计算的应用场景
-
云存储:云存储系统可以解决本地存储在管理上的缺失,降低数据的丢失率,整合网络中多种存储设备来对外提供云存储服务,并能管理数据的存储、备份、同步和存档,云存储系统非常适合那些需要管理和存储海量数据的企业
-
云计算:为机器学习模式提供超强的计算服务,例如图形图形、计算机视觉需要大量的算力
-
云测试:虚拟镜像来快速地构建一个个异构的开发测试环境,通过快速备份/恢复等虚拟化技术来重现问题,并利用云的强大的计算能力来对应用进行压力测试
-
云杀毒:云杀毒技术可以在云中安装附带庞大的病毒特征库的杀毒软件,当发现有嫌疑的数据时,杀毒软件可以将有嫌疑的数据上传至云中,并通过云中庞大的特征库和强大的处理能力来分析这个数据是否含有病毒
边缘计算
云计算就像是天上的云,看得见摸不着,像章鱼的大脑,边缘计算就类似于八爪鱼的那些小爪子,一个爪子就是一个小型的机房,靠近具体的实物。边缘计算更靠近设备端,更靠近用户。云计算是把握整体,那么边缘计算就更专注于局部。那么边缘计算的优势就显而易见。
边缘计算优势
- 实时性:边缘计算分布式以及靠近设备端的特性注定它实时处理的优势,所以它能够更好的支撑本地业务实时处理与执行。
- 省资源、省流量:边缘计算减缓数据爆炸和网络流量的压力,用过边缘节点进行数据处理,减少从设备到云端的数据流量。
- 更智能、更节能:AI+边缘计算组合的边缘计算不止于计算,智能化特点明显
边缘计算解决堵车问题
- 限牌 ?
- 限行 ?
- 百度地图推荐路线 ?
边缘计算 VS 云计算
边缘计算和云计算互相协同,它们是彼此优化补充的存在,共同使能行业数字化转型。云计算是一个统筹者,它负责长周期数据的大数据分析,能够在周期性维护、业务决策等领域运行。边缘计算着眼于实时、短周期数据的分析,更好地支撑本地业务及时处理执行。边缘计算靠近设备端,也为云端数据采集做出贡献,支撑云端应用的大数据分析,云计算也通过大数据分析输出业务规则下发到边缘处,以便执行和优化处理。
所谓万物互联,以时间为横坐标延伸,最大的网络就是物联网。那么边缘计算就是靠近物联网边缘的计算、处理、优化和存储。搭载物联网的发展,边缘计算的应用也十分广泛,智慧城市、智慧家居、智慧医院、在线直播,到智能泊车、自动驾驶、无人机、智能制造等各方面都有它的身影,制霸物联网的时刻指日可待。