06_高效选择行与列

在这里插入图片描述


博文配套视频课程:24小时实现从零到AI人工智能


数据保存在DataFrame中之后后续如果要进行数据清理和挖掘则前提要进行数据的筛选操作,本章讲解了三种最常见的数据筛选方式:列名、索引、条件

基于列名的筛选

import numpy as np
import pandas as pd

# 创建一个DataFrame
df = pd.DataFrame(data=np.arange(12).reshape(3,4),index=list('abc'),columns=list('wxyz'))
# 显示整个df的结构,相关的信息
df.info()

print('pd默认列优先,numpy默认是行优先')
print(df['w'],type(df['w']))
# 如果是多列,则返回的是子DataFrame
print(df[['w','z']],type(df[['w','z']]))

自然数索引筛选

import numpy as np
import pandas as pd

# 创建一个DataFrame
df = pd.DataFrame(data=np.arange(12).reshape(3,4),index=list('abc'),columns=list('wxyz'))
# 显示整个df的结构,相关的信息
df.info()

print('通过iloc采用自然数索引来获取')
print(df.iloc[:,[2,1]])
print(df.iloc[[0,2],[0,2,3]])

条件过滤的筛选

import numpy as np
import pandas as pd

# 创建一个DataFrame
df = pd.DataFrame(data=np.arange(12).reshape(3,4),index=list('abc'),columns=list('wxyz'))
# 显示整个df的结构,相关的信息
df.info()

print('通过条件来过滤与筛选')
print(df)
print(df[df['y'] > 5])
print('多条件的过滤 | & ~ 运算')
print(df[(df['y']>5) & (df['x']<8)])
print(df[~(df['x']>1)])

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值