代码随想录day5 哈希表

242. 有效的字母异位词 - 力扣(LeetCode)

遍历一次t和s,构成两个字典,遍历一遍字典,字典最多有26个键值对。时间O(n)空间O(1)。

python dict的get方法:dict_name.get(key, default_val_if_key_not_exist) -> dict_name[key]。

class Solution(object):
    def isAnagram(self, s, t):
        if len(s) != len(t):
            return False

        n = len(s)
        s_dict = dict()
        t_dict = dict()
        for i in range(n):
            s_dict[s[i]] = s_dict.get(s[i], 0) + 1
            t_dict[t[i]] = t_dict.get(t[i], 0) + 1
        
        for k, v in s_dict.items():
            try:
                flag = t_dict[k] == v
                if not flag:
                    return False
            except KeyError:
                return False
        
        return True

由于python的dict可以直接通过 == 判断两字典是否具有一致的键值对,可简化为: 

class Solution(object):
    def isAnagram(self, s, t):
        if len(s) != len(t):
            return False

        n = len(s)
        s_dict = dict()
        t_dict = dict()
        for i in range(n):
            s_dict[s[i]] = s_dict.get(s[i], 0) + 1
            t_dict[t[i]] = t_dict.get(t[i], 0) + 1

        return t_dict == s_dict

使用defaultdict可进一步化简:

python defaultdict vs dict: The difference is that a defaultdict will "default" a value if that key has not been set yet. If you didn't use a defaultdict you'd have to check to see if that key exists, and if it doesn't, set it to what you want.

from collections import defaultdict

class Solution(object):
    def isAnagram(self, s, t):
        if len(s) != len(t):
            return False

        n = len(s)
        s_dict = defaultdict(int)
        t_dict = defaultdict(int)
        for i in range(n):
            s_dict[s[i]] += 1
            t_dict[t[i]] += 1
            
        return t_dict == s_dict

349. 两个数组的交集 - 力扣(LeetCode)

使用三个集合set1、set2、res,遍历一次集合set1,时间O(n+m)空间O(n),其中m是集合和数组转换的耗时。

if num in set2耗时O(1):

In Python, sets are typically implemented using hash tables. Retrieving an element from a hash set (like Python's set) has an average time complexity of O(1).

class Solution:
    def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
        set1 = set(nums1)
        set2 = set(nums2)
        res = set()
        for num in set1:
            if num in set2:
                res.add(num)
        
        return list(res)

202. 快乐数 - 力扣(LeetCode)

又记错python的整除... /是除,得到小数;//才是整除,得到整数。

时空复杂度都是O(logn)(如何证明?

class Solution:
    def isHappy(self, n: int) -> bool:
        visit = set()
        cur = n
        while cur not in visit:
            if cur == 1:
                return True

            visit.add(cur)
            s = 0 #sum
            while cur > 0:
                s += (cur % 10) ** 2
                cur //= 10 
            cur = s
        
        return False

1. 两数之和 - 力扣(LeetCode)

暴力解法,两层for循环,时间O(n^2)、空间O(1)。

class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        #暴力
        for i in range(len(nums) - 1):
            tar = target - nums[i]
            for j in range(i + 1, len(nums)):
                if nums[j] == tar:
                    return [i, j]

用哈希表,dict或defaultdict实现,记录已访问过的元素,令key为元素值、value为元素下标。只遍历一次数组,对当前元素cur,若哈希表里存在能够与cur加和为target的元素,返回;若不存在,将cur添加至哈希表,继续。时间和空间都为O(n)。由于题目要求返回下标,不可用集合set记录访问过的元素。

class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        #map,时间O(n)空间O(n)
        from collections import defaultdict
        visit = defaultdict()
        for i in range(len(nums)):
            try:
                idx = visit[target - nums[i]]
                return [i, idx]
            except KeyError:
                visit[nums[i]] = i

也可以不用try/except,直接判断 if key in dict_name,如下

class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        #map,时间O(n)空间O(n)
        visit = dict()
        for i in range(len(nums)):
            com = target - nums[i] #complement
            if com in visit:
                return [i, visit[com]]
            else:
                visit[nums[i]] = i

### 关于哈希表的学习资源 对于希望深入理解哈希表的人来说,代码随想录提供了丰富的学习材料。网站上的哈希表部分不仅涵盖了基础概念,还包含了实际应用案例和解题思路[^1]。 #### 哈希表的基础理论 哈希表是一种基于键值对的数据结构,它允许快速访问数据项。其工作原理是通过特定的哈希函数计算给定键对应的索引位置,并以此来存取关联的数据值。当多个不同的输入映射到相同的输出时会发生冲突,即所谓的哈希碰撞现象。处理这类情况的方法有两种主要方式:拉链法(分离链接)与开放寻址法(如线性探测)。这些基础知识可以在代码随想录有关哈希表的文章中找到详细的解释[^5]。 #### 实战练习与技巧分享 为了更好地掌握哈希表的应用场景和技术细节,在完成理论学习之后可以尝试解答一些经典的算法题目。例如,“有效的字母异位词”,这是一道考察字符串操作能力的好题;还有“快乐数”的求解过程也涉及到循环检测等内容。此外,《学透哈希表》系列课程则更侧重于指导如何高效利用`Map`接口下的各种方法解决问题,比如`getOrDefault()`等实用功能[^4]。 ```java // 使用HashMap.getOrDefault()获取指定key对应value,如果不存在返回默认值 public int getValueOrDefault(Map<String, Integer> map, String key){ return map.getOrDefault(key, 0); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值