推荐系统常见问题主要集中在以下4个维度:
- 冷启动
- 数据稀疏
- 不断变化的用户喜好
- 不可预知的事项
冷启动
1.用户冷启动:给新用户做个性化推荐
解决方案:
- 根据用户注册信息对用户进行分类
- 推荐热门的排行榜
- 基于深度学习的语义理解模型
- 引导用户把自己的属性表达出来
- 利用用户在社交媒体的信息
2.物品冷启动:把新的物品推荐给特定的用户
解决方案:
- 文本分析
- 主题模型
- 给物品打标签
- 推荐排行榜单
3.系统冷启动:新系统让用户感受到个性化推荐
数据稀疏
解决方案:
- 奇异值分解:降低矩阵维数能降低数据稀疏性
- 数据填充:假设用户对其感兴趣物品相似的物品也感兴趣
- 基于物品本身的信息:基于深度学习的语义理解模型
不断变化的用户喜好
- 对用户行为的存储有实时性
- 推荐算法要考虑到用户近期行为和长期行为
- 要不断挖掘用户新的兴趣爱好