力扣hot100 最长递增子序列 线性DP 贪心 二分

文章介绍了如何使用动态规划和贪心加二分法解决最长递增子序列问题。动态规划方法的时间复杂度为O(n^2),空间复杂度为O(n);而贪心+二分法的时间复杂度降低到O(nlogn),空间复杂度同样为O(n)。两种方法的代码实现和性能对比详细阐述。
摘要由CSDN通过智能技术生成

Problem: 300. 最长递增子序列
在这里插入图片描述

💖 动态规划

思路

在这里插入图片描述

复杂度

时间复杂度: O ( n 2 ) O(n^2) O(n2)

空间复杂度: O ( n ) O(n) O(n)

Code

class Solution {
	public int lengthOfLIS(int[] nums)
	{
		int n = nums.length;
		int[] f = new int[n + 1];// f[i] 表示以 nums[i] 结尾的最大上升子序列长度
		int ans = 0;
		for (int i = 0; i < n; i++)
		{
			f[i] = 1;//以自己为结尾,初始化长度为 1
			for (int j = 0; j < i; j++)
				if (nums[i] > nums[j])// 在 i 前边找到一个严格比自己小的元素,接上去(+1)
					f[i] = Math.max(f[i], f[j] + 1);
			ans = Math.max(ans, f[i]);//答案即是以任意元素结尾的最大上升子序列的最大值
		}
		return ans;
	}
}

💖 贪心 + 二分

思路

👨‍🏫 参考题解
在这里插入图片描述

复杂度

时间复杂度: O ( n log ⁡ n ) O(n\log{n}) O(nlogn)

空间复杂度: O ( n ) O(n) O(n)

Code

class Solution {
	public int lengthOfLIS(int[] nums)
	{
		int n = nums.length;
		int[] tail = new int[n + 1];// tail[i] 表示子序列长度为 i 的最小元素值
		int ans = 0;
		for (int x : nums)
		{
			int l = 0;
			int r = ans;
//			找到 tail[i-1] < x < tail[i] 的位置,x就可以把 tail[i] 替换掉
//			换而言之,就是找到第一个  >  x 的 tail[i] 的 i (upperBound)
			while (l < r)
			{
				int m = l + r >> 1;
				if (tail[m] < x)
					l = m + 1;
				else
					r = m;
			}
			tail[l] = x;
			// ans == l 说明目前tail数组的元素都比当前的 num 要小 因此最长子序列的长度可以增加了 
			if (ans == l)
				ans++;
		}
		return ans;
	}
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值