Leetcode 583 两个字符串的删除操作

题意理解

        给定两个单词 word1 和 word2 ,返回使得 word1 和  word2 相同所需的最小步数

        每步 可以删除任意一个字符串中的一个字符。

        该题的要求是:当前有两个单词,要是两个单词剩余的部分相同,最少需要删除多少个字母。

        这里有两个思路来求解这道题:

        一种是设置合理的dp数组,通过动态规划的思路来求解最小的操作次数。

        另一种方式是求解两个单词的最长公共子序列,然后两个单词长度和-二倍的最长公共子序列即为最小删除的次数。

解题思路

        动态规划:

        (1)定义dp数组

          dp[i][j]表示word1第i个元素前,word2第j个元素前要使两者相等需要删除的最小次数。

        (2)递推公式

        当word1[i-1]=word2[j-1]时

                dp[i][j]=dp[i-1][j-1]

                此时指示的两个单词相同,都删除和都不删,都能获得相同序列

                但此时求最小删除数,所以不删除这两个字母

        当word1[i-1]不等于word2[j-1]时

        有三种情况:

                删掉word1里的字母=dp[i-1][j]+1

                删掉word2里的字母=dp[i][j-1]+1

                删掉word1和word2里的字母=dp[i-1][j-1]+2

        这里求最小操作数,所以有:

        dp[i][j]=min(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+2)

        (3)初始化:

        dp[0][j]表示word1是空串,word2有字符,删除j个字符即可,则有dp[0][j]=j

        同理:dp[i][0]=i

        

1.动态规划解题

 public int minDistance(String word1, String word2) {
        int[][] dp=new int[word1.length()+1][word2.length()+1];
        for(int i=0;i<=word1.length();i++){
            dp[i][0]=i;
        }
        for(int j=1;j<=word2.length();j++){
            dp[0][j]=j;
        }
        for(int i=1;i<=word1.length();i++){
            for(int j=1;j<=word2.length();j++){
                if(word1.charAt(i-1)==word2.charAt(j-1)){
                    //不删
                    dp[i][j]=dp[i-1][j-1];
                }else {
                    dp[i][j]=Math.min(Math.min(dp[i-1][j]+1,dp[i][j-1]+1),dp[i-1][j-1]+2);
                }
            }
        }
        return dp[word1.length()][word2.length()];
    }

2.求最长公共子序列解题

public int minDistance2(String word1, String word2) {
        int[][] dp=new int[word1.length()+1][word2.length()+1];
        for(int i=0;i<=word1.length();i++){
            Arrays.fill(dp[i],0);
        }
        //求最长公共子序列
        for(int i=1;i<=word1.length();i++){
            for(int j=1;j<=word2.length();j++){
                if(word1.charAt(i-1)==word2.charAt(j-1)){
                    //不删
                    dp[i][j]=dp[i-1][j-1]+1;
                }else {
                    dp[i][j]=Math.max(Math.max(dp[i][j-1],dp[i-1][j]),dp[i-1][j-1]);
                }
            }
        }
        return word1.length()+word2.length()-2*dp[word1.length()][word2.length()];
    }

3.复杂度分析

时间复杂度:O(n^2)

空间复杂度:O(n^2)

      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值