图的类型
Graph类是无向图的基类,无向图能有自己的属性或参数,不包含重边,允许有回路,节点可以是任何hash的python对象,节点和边可以保存key/value属性对。
该类的构造函数为Graph(data=None,**attr)
,其中data可以是边列表,或任意一个Networkx的图对象,默认为none;attr是关键字参数,例如key=value对形式的属性。
MultiGraph是可以有重边的无向图,其它和Graph类似。
其构造函数MultiGraph(data=None, *attr)
DiGraph是有向图的基类,有向图可以有数自己的属性或参数,不包含重边,允许有回路;节点可以是任何hash的python对象,边和节点可含key/value属性对。
该类的构造函数DiGraph(data=None,**attr)
,其中data可以是边列表,或任意一个Networkx的图对象,默认为none;attr是关键字参数,例如key=value对形式的属性
MultiDiGraph是可以有重边的有向图,其它和DiGraph类似。
其构造函数MultiDiGraph(data=None, *attr)
图的创建
import networkx as nx
G=nx.Graph() #创建了一个没有节点和边的空图
G.add_node(1)#一次增加一个节点:
G.add_nodes_from([2,3])#可以是列表、字典、文件的某些行、其它图等
G.add_nodes_from(H) #H is a graph object here
图的边
#一次增加一条边:
G.add_edge(1,2)
#列表
G.add_edges_from([(1,2),(1,3)])
# 边集合
G.add_edges_from(H.edges())
属性
对于图,边和节点都能将key/value对作为自己的属性,保存在相关的dictionary中。该关联字典默认为空,但是能通过add_edge,add_node或操作进行修改。
添加图的属性:
G=nx.Graph(day="Friday")
添加节点的属性:#主要的方法是add_node()和add_nodes_from()
G.add_node(1,time=‘5pm‘) #给节点1加属性对time:5pm
G.add_nodes_from([3], time=‘2pm‘) #对前一个参数中的所有节点,添加属性对time:2pm
G.node[1][‘room‘]=714 #为G中的节点1添加属性对room:714
添加边的属性:#主要方法是add_edge(),add_edges()和G.edge
G.add_edge(1,2,‘weight‘=4.7) #为1和2之间的边,添加属性weight:4.7
G.add_edges_from([(3,4),(4,5)],color=‘red‘) #为连接3和4、4和5的边添加属性对color:red
G[1][2][‘weight‘]=4.7
G.edge[1][2][‘weight‘]=4
其它
len(G) #返回G中节点数目
n in G #检查节点n是否在G中,如在,返回true。
相关函数
初始化:G=nx.Graph()
图相关属性的函数:
nx.degree(G)// 计算图的密度,其值为边数m除以图中可能边数(即n(n-1)/2)
nx.degree_centrality(G)//节点度中心系数。通过节点的度表示节点在图中的重要性,默认情况下会进行归一化,其值表达为节点度d(u)除以n-1(其中n-1就是归一化使用的常量)。这里由于可能存在循环,所以该值可能大于1.
nx.closeness_centrality(G)//节点距离中心系数。通过距离来表示节点在图中的重要性,一般是指节点到其他节点的平均路径的倒数,这里还乘以了n-1。该值越大表示节点到其他节点的距离越近,即中心性越高。
nx.betweenness_centrality(G)//节点介数中心系数。在无向图中,该值表示为节点作占最短路径的个数除以((n-1)(n-2)/2);在有向图中,该值表达为节点作占最短路径个数除以((n-1)(n-2))。
nx.transitivity(G)//图或网络的传递性。即图或网络中,认识同一个节点的两个节点也可能认识双方,计算公式为3*图中三角形的个数/三元组个数(该三元组个数是有公共顶点的边对数,这样就好数了)。
nx.clustering(G)//图或网络中节点的聚类系数。计算公式为:节点u的两个邻居节点间的边数除以((d(u)(d(u)-1)/2)。
实例:
- 无向图:
import networkx as nx #导入NetworkX包,为了少打几个字母,将其重命名为nx
G = nx.Graph() #建立一个空的无向图G
G.add_node(1) #添加一个节点1
G.add_edge(2,3) #添加一条边2-3(隐含着添加了两个节点2、3)
G.add_edge(3,2) #对于无向图,边3-2与边2-3被认为是一条边
print G.nodes() #输出全部的节点: [1, 2, 3]
print G.edges() #输出全部的边:[(2, 3)]
print G.number_of_edges() #输出边的数量:1
-
有向图
有向图的建立方式和无向图基本类似,只是在上述代码的第二行,将G = nx.Graph() 改为 G = nx.DiGraph() 。需要注意的是,此时再添加边3-2与边2-3,则被认为是两条不同的边(可以试着运行上述代码,自己查看结果)。
同时,有向图和无向图是可以相互转化的,分别用到Graph.to_undirected() 和 Graph.to_directed()两个方法。 -
加权图(网络)
有向图和无向图都可以给边赋予权重,用到的方法是add_weighted_edges_from,它接受1个或多个三元组[u,v,w]作为参数,其中u是起点,v是终点,w是权重。例如:
G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])
print G.get_edge_data(1,2) #输出{‘weight‘: 7.5},这是一个字典结构,可以查看python语法了解它的用法。
- 论文中的图
def build_graph(train_data):
graph = nx.DiGraph()
for seq in train_data:
for i in range(len(seq) - 1):
if graph.get_edge_data(seq[i], seq[i + 1]) is None:
weight = 1
else:
weight = graph.get_edge_data(seq[i], seq[i + 1])['weight'] + 1
graph.add_edge(seq[i], seq[i + 1], weight=weight)
for node in graph.nodes:
sum = 0
for j, i in graph.in_edges(node):
sum += graph.get_edge_data(j, i)['weight']
if sum != 0:
for j, i in graph.in_edges(i):
graph.add_edge(j, i, weight=graph.get_edge_data(j, i)['weight'] / sum)
return graph
调用图算法
NetworkX 提供了常用的图论经典算法,例如DFS、BFS、最短路、最小生成树、最大流等等,非常丰富,如果不做复杂网络,只作图论方面的工作,也可以应用 NetworkX作为基本的开发包。具体的算法调用方法我就不一一介绍了,
其他详见: