通过MapReduce把Hive表数据导入到HBase

由于Hive查询速度比较慢,进行了表分区使用Impala也是很满意,所以为了公司业务展示,需要测试使用HBase的查询速度怎么样,头一件事就是把HIVE的数据导入到HBase中,搜了半天也没搜到到底该怎么搞,也有说能用Sqoop的,可是没找到资料,只好自己用MapReduce实现。

话不多说,逻辑很简单,只是用了Map,直接上代码。

public class Hive2HBase {

    /**
     * Mapper
     */
    static class ImportMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> {

        @Override
        public void map(LongWritable offset, Text value, Context context) {
            String[] splited = value.toString().split("\t");
            if (splited.length != 4)
                return;
            try {

                byte[] rowkey = Bytes.toBytes(splited[0]);// id作为rowkey

                Put put = new Put(rowkey);
                // 为了省事直接列名为log1...log4

                for (int j = 0; j < splited.length; j++) {
                    put.addColumn(Bytes.toBytes(HConfiguration.colFamily), Bytes.toBytes("log" + j),
                            Bytes.toBytes(splited[j]));
                }

                context.write(new ImmutableBytesWritable(rowkey), put);

            } catch (NumberFormatException e) {
                System.out.println("出错了" + e.getMessage());
            } catch (IOException e) {
                e.printStackTrace();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    /**
     * Main
     * 
     * @param args
     * @throws Exception
     */
    public static void main(String[] args) throws Exception {

        Configuration configuration = new Configuration();
        // 设置zookeeper
        configuration.set("hbase.zookeeper.quorum", HConfiguration.hbase_zookeeper_quorum);
        configuration.set("hbase.zookeeper.property.clientPort", "2181");
        // 设置hbase表名称
        configuration.set(TableOutputFormat.OUTPUT_TABLE, HConfiguration.tableName);
        // 将该值改大,防止hbase超时退出
        configuration.set("dfs.client.socket-timeout", "180000");

        MRDriver myDriver = MRDriver.getInstance();

        try {
            //创建表
            myDriver.createTableIfExistDelete(HConfiguration.tableName, HConfiguration.colFamily);
        } catch (Exception e) {
            e.printStackTrace();
        }

        Job job = new Job(configuration, "HBaseBatchImport");

        job.setJarByClass(Hive2HBase.class);
        job.setMapperClass(ImportMapper.class);
        // 设置map的输出,不设置reduce的输出类型
        job.setMapOutputKeyClass(ImmutableBytesWritable.class);
        job.setMapOutputValueClass(Writeable.class);
        job.setNumReduceTasks(0);

        job.setInputFormatClass(TextInputFormat.class);
        // 不再设置输出路径,而是设置输出格式类型
        job.setOutputFormatClass(TableOutputFormat.class);
        // hive表路径
        FileInputFormat.setInputPaths(job, "hdfs://172.*.*.2:8022/user/hive/warehouse/sample_07");

        job.waitForCompletion(true);
    }
}
基于hadoop的Hive数据仓库JavaAPI简单调用的实例,关于Hive的简介在此不赘述。hive提供了三种用户接口:CLI,JDBC/ODBC和 WebUI CLI,即Shell命令行 JDBC/ODBC 是 HiveJava,与使用传统数据库JDBC的方式类似 WebGUI是通过浏览器访问 Hive 本文主要介绍的就是第二种用户接口,直接进入正题。 1、Hive 安装: 1)hive的安装请参考网上的相关文章,测试时只在hadoop一个节点上安装hive即可。 2)测试数据data文件'\t'分隔: 1 zhangsan 2 lisi 3 wangwu 3)将测试数据data上传到linux目录下,我放置在:/home/hadoop01/data 2、在使用 JDBC 开发 Hive 程序时, 必须首先开启 Hive 的远程服务接口。使用下面命令进行开启: Java代码 收藏代码 hive --service hiveserver >/dev/null 2>/dev/null & 我们可以通过CLI、Client、Web UI等Hive提供的用户接口来和Hive通信,但这三种方式最常用的是CLI;Client 是Hive的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出Hive Server所在节点,并且在该节点启动 Hive Server。 WUI 是通过浏览器访问 Hive。今天我们来谈谈怎么通过HiveServer来操作Hive。   Hive提供了jdbc驱动,使得我们可以用Java代码来连接Hive并进行一些类关系型数据库的sql语句查询等操作。同关系型数据库一样,我们也需要将Hive的服务打开;在Hive 0.11.0版本之前,只有HiveServer服务可用,你得在程序操作Hive之前,必须在Hive安装的服务器上打开HiveServer服务,如下: 1 [wyp@localhost/home/q/hive-0.11.0]$ bin/hive --service hiveserver -p10002 2 Starting Hive Thrift Server 上面代你已经成功的在端口为10002(默认的端口是10000)启动了hiveserver服务。这时候,你就可以通过Java代码来连接hiveserver,代码如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值