激活函数总结

本文深入探讨了在神经网络中常用的几种激活函数,包括Identity函数、Logistic函数(Sigmoid)、双曲正切函数(Tanh)以及ReLU函数。这些函数在神经网络的非线性变换中起着关键作用,影响模型的学习能力和预测性能。Identity函数提供线性变换,而Sigmoid和Tanh则引入了S型曲线,适合二元分类问题。ReLU因其简单且有效避免梯度消失问题而在深度学习中广泛使用。
摘要由CSDN通过智能技术生成

identity

f ( x ) = x f(x) = x f(x)=x

logistic

f ( x ) = 1 1 + e x p ( − x ) f(x) = \frac 1{ 1 + exp(-x)} f(x)=1+exp(x)1

tanh

f ( x ) = t a n h ( x ) f(x) = tanh(x) f(x)=tanh(x)

relu

f ( x ) = m a x ( 0 , x ) f(x) = max(0, x) f(x)=max(0,x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旺旺棒棒冰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值