模线性方程组与逆元

26 篇文章 2 订阅

1、模线性方程组:

首先介绍模线性方程组求解:

2、逆元

逆元简介:

(a / b)% m == (a * x) % m
这里 x 是 b 的逆元,也就是说  :  除以一个数取模等于乘以这个数的逆元取模。

利用模线性方程组求解逆元:

对于 ax \equivb(mod n) 当b == 1时,ax \equiv 1 (mod n) 的解称为a关于模n的逆,也叫a的逆元。
什么时候逆元存在呢?
ax \equiv 1 (mod n)  => ax - ny = 1 => 当gcd(a, n) | 1 时,也就是当 a 与 n 互质时,有解,且有唯一解。
所以可以利用扩展欧几里德算法(https://blog.csdn.net/ltrbless/article/details/86789826) 对ax - ny = 1 求解

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值