1、模线性方程组:
首先介绍模线性方程组求解:
2、逆元
逆元简介:
(a / b)% m == (a * x) % m
这里 x 是 b 的逆元,也就是说 : 除以一个数取模等于乘以这个数的逆元取模。
利用模线性方程组求解逆元:
对于 ax b(mod n) 当b == 1时,ax 1 (mod n) 的解称为a关于模n的逆,也叫a的逆元。
什么时候逆元存在呢?
ax 1 (mod n) => ax - ny = 1 => 当gcd(a, n) | 1 时,也就是当 a 与 n 互质时,有解,且有唯一解。
所以可以利用扩展欧几里德算法(https://blog.csdn.net/ltrbless/article/details/86789826) 对ax - ny = 1 求解