LeetCode刷题【Array】Search a 2D Matrix

题目:

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

For example,

Consider the following matrix:

[
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]

Given target = 3, return true.

解决方法一: Runtime:  1 ms 二分查找思想

public class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        if(null==matrix||matrix.length<=0||matrix[0].length<=0) return false;
		int start=0;
		int end=matrix.length-1;
		int row=0; int column=0;
		while(start<=end){
			row=(start+end)/2;
			if(matrix[row][column]==target) return true;
			else if(matrix[row][column]>target) end=row-1;
			else if(matrix[row][column]<target&&matrix[row][matrix[row].length-1]<target) start=row+1;
			else break;
		}
		start=0;end=matrix[row].length-1;
		while(start<=end){
			column=(start+end)/2;
			if(matrix[row][column]==target) return true;
			if(matrix[row][column]>target) end=column-1;
			if(matrix[row][column]<target) start=column+1;
		}
		return false;
    }
}

解决方法二: 把二维数组当做Array处理,可能存在m*n Runtime:  1 ms


public class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        if(null==matrix||matrix.length<=0) return false;
        int row_num=matrix.length;
        int colnum_num=matrix[0].length;
		int start=0;
		int end=row_num*colnum_num-1;
		int mid=0;
		int mid_value=0;
		while(start<=end){
			mid=(start+end)/2;
			mid_value=matrix[mid/colnum_num][mid%colnum_num];
			if(mid_value==target) return true;
			else if(mid_value>target) end=mid-1;
			else if(mid_value<target) start=mid+1;
		}
		return false;
    }
}

参考:

【1】https://leetcode.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值