- 博客(95)
- 资源 (2)
- 收藏
- 关注
转载 如何让消费者接受产品,减少后悔
一般来说,一个顾客投诉某平台,一定是对于平台的单次产品和服务而非整个平台不满,这时平台给出抵用券的补偿,消费者的心理活动是这样的:我对于单次服务表达一下不满,且服务已经完成,结果无法改变了,接受他们的抵用券,下次可以给我省不少钱,未尝不是一个好的解决方案。想到这里,一般消费者也就接受了。使用苹果产品的人会认为自己是时尚前沿的人,使用索尼的人会认为自己的事追求极致的人,使用华为的人会认为自己是国产品牌拥护者,一旦确认了自己是什么样的人,消费者很少会更换品牌,以此来维持自己前后一致的形象。
2024-04-15 11:51:44 65
转载 超全面的UI设计规范整理汇总(包含iPhone X适配)
目前主流的iOS设备主要有iPhone SE(4英寸)、iPhone 6s/7/8(4.7英寸)、iPhone 6s/7/8 Plus(5.5英寸)、iPhone X(5.8英寸),它们都采用了Retina视网膜屏幕,其中iPhone 6s/7/8 Plus和iPhone X采用的是3倍率的分辨率,其他都是采用的2倍率的分辨率,无论是栏高度还是应用图标,设计师提供给开发人员的切片大小,前者始终是后者的1.5倍,并分别以@3x和@2x在文件名结尾命名,程序再根据不同分辨率自动加载@3x或者@2x的切片。
2024-02-20 10:54:49 7059 1
转载 一文看懂自然语言生成 - NLG(6个实现步骤+3个典型应用)
本文首发自 easyAI - 人工智能知识库原文地址:《一文看懂自然语言生成 - NLG(6个实现步骤+3个典型应用)》自然语言生成 - NLG 是 NLP 的重要组成部分,他的主要目的是降低人类和机器之间的沟通鸿沟,将非语言格式的数据转换成人类可以理解的语言格式。本文除了介绍 NLG 的基本概念,还会介绍 NLG 的3个 Level、6个步骤和3个典型的应用。什么是 NLG?NLG 是 NLP 的一部分NLP = NLU + NLG自然语言生成 - NLG 是 NLP
2020-10-28 14:09:47 3270 1
转载 云平台及OpenStack简介
目录什么是”云”?“云”的类型开源IaaS平台OpenStackOpenStack架构后记贴上一篇两年前写的文章,为了后面写云相关主题服务。曾几何时,”云”还是指天上飘的那一朵朵白色的雾团,现在互联网上家家都说自己是”xx云”。 “云”这个词,已经被赋上了新的含义。其实真正在做”云”的企业没几家。这篇文章会告诉大家,究竟什么是”云”?并采用现在最火的开源云平台OpenStack来给大家介绍”云”的架构。什么是”云”?让我们先看一个关于住房的例子。北漂的程序猿A...
2020-05-27 21:04:15 1823
转载 Docker和k8s的介绍以及核心网虚拟化
2010年,几个搞IT的年轻人,在美国旧金山成立了一家名叫“dotCloud”的公司。这家公司主要提供基于PaaS的云计算技术服务。具体来说,是和LXC有关的容器技术。LXC,就是Linux容器虚拟技术(Linux container)后来,dotCloud公司将自己的容器技术进行了简化和标准化,并命名为——Docker。Docker技术诞生之后,并没有引起行业的关注。而dotCloud公司,作为一家小型创业企业,在激烈的竞争之下,也步履维艰。正当他们快要坚持不下去的时候,脑
2020-05-27 21:01:59 1058 1
转载 Bert关键源码详细解读
本篇文章主要是解读模型主体代码modeling.py。在阅读这篇文章之前希望读者们对bert的相关理论有一定的了解,尤其是transformer的结构原理,网上的资料很多,本文内容对原理部分就不做过多的介绍了。我自己写出来其中一个目的也是帮助自己学习整理、当你输出的时候才也会明白哪里懂了哪里不懂。因为水平有限,很多地方理解不到位的,还请各位批评指正。1、配置class Bert...
2020-05-07 22:07:02 864
转载 两行代码玩转Google BERT句向量词向量
转自:https://zhuanlan.zhihu.com/p/50582974两行代码玩转Google BERT句向量词向量PaperWeekly微信公众号PaperWeekly262 人赞同了该文章关于作者:肖涵博士,bert-as-service 作者。现为腾讯 AI Lab 高级科学家、德中人工智能协会主席。肖涵的 Fashion-MNIST 数据集已成为机器...
2020-05-07 20:43:02 672
转载 word2vec和word embedding有什么区别?
目录〇、序一、DeepNLP的核心关键:语言表示(Representation)二、NLP词的表示方法类型三、NLP语言模型四、词的分布式表示五、词嵌入( word embedding)六、神经网络语言模型与word2vec七、后言作者:Scofield链接:https://www.zhihu.com/question/53354714/answer/1553...
2020-05-07 14:53:17 756
转载 数据集
From:http://www.xuwei.io/2018/11/30/%E6%96%87%E6%9C%AC%E5%88%86%E7%B1%BB-glue%E6%95%B0%E6%8D%AE%E9%9B%86%E4%BB%8B%E7%BB%8D/GLUE榜单地址:https://gluebenchmark.com/leaderboard/如果要用一句话形容文本分类任务在NLP中的应...
2020-05-06 15:24:14 323
转载 NLP发展史及Transformer、Bert详细介绍
一文读懂BERT(原理篇)2018年的10月11日,Google发布的论文《Pre-training of Deep Bidirectional Transformers for Language Understanding》,成功在 11 项 NLP 任务中取得 state of the art 的结果,赢得自然语言处理学界的一片赞誉之声。本文是对近期关于BERT论文、相关文章、代码进行学...
2020-05-04 16:37:55 3127
转载 Bert、GPT、ELmo对比解析及文本分类应用
BERTBERT全称是Bidirectional Encoder Representations from Transformers,取了核心单词的首字母而得名,从名字我们能看出该模型两个核心特质:依赖于Transformer以及双向,下面来看论文中的一结构对比图:正在上传…重新上传取消论文在最一开始就与另外两个pretrain模型:ELMo和OpenAI GPT做了对比,从结构...
2020-04-27 16:09:46 3829
转载 简明Jieba中文分词教程(分词、关键词提取、词性标注、计算位置)
目录0 引言1 分词1.1 全模式和精确模式1.2 搜索引擎模式1.3 HMM 模型2 繁体字分词3 添加自定义词典3.1 载入词典3.2 调整词典4 关键词提取4.1 基于 TF-IDF 算法的关键词提取4.2 基于 TextRank 算法的关键词提取4.3 自定义语料库5 词性标注6 并行分词7 返回词语在原文的起止位置...
2020-04-16 21:27:01 11757 1
转载 探索 YOLO v3 实现细节 - 第 1 篇 训练
YOLO, 即 You Only Look Once(你只看一次)的缩写, 是一个基于卷积神经网络 (CNN) 的物体检测算法.而 YOLO v3 https://pjreddie.com/media/files/papers/YOLOv3.pdf 是 YOLO 的第 3 个版本(即 YOLO https://arxiv.org/abs/1506.02640 ,YOLO 9000 https://...
2020-04-15 21:17:14 1140
转载 各种机器学习算法的应用场景分别是什么(比如朴素贝叶斯、决策树、K 近邻、SVM、逻辑回归最大熵模型)?
作者:xyzh链接:https://www.zhihu.com/question/26726794/answer/151282052来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。关于这个问题我今天正好看到了这个文章。讲的正是各个算法的优劣分析,很中肯。https://zhuanlan.zhihu.com/p/25327755正好14年的时候有人...
2020-04-12 22:04:14 1397
转载 处理样本不均衡问题算法:SMOTE
SMOTE(Synthetic Minority Oversampling Technique),合成少数类过采样技术.它是基于随机过采样算法的一种改进方案,由于随机过采样采取简单复制样本的策略来增加少数类样本,这样容易产生模型过拟合的问题,即使得模型学习到的信息过于特别(Specific)而不够泛化(General),SMOTE算法的基本思想是对少数类样本进行分析并根据少数类样本人工合成新样本添...
2020-04-12 11:19:10 2935 1
转载 爬虫解析库:XPath
XPath XPath,全称 XML Path Language,即 XML 路径语言,它是一门在 XML 文档中查找信息的语言。最初是用来搜寻 XML 文档的,但同样适用于 HTML 文档的搜索。所以在做爬虫时完全可以使用 XPath 做相应的信息抽取。1. XPath 概览 XPath 的选择功能十分强大,它提供了非常简洁明了的路径选择表达式。另外,它还提供了超过 10...
2020-04-11 17:46:23 411
转载 主成分分析(PCA)简介及sklearn参数
1.PCA简介 PCA作为降维最重要的方法之一,在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。PCA的思想就是将高维数据投影到低维,一般基于两个标准选择投影方向:基于最小投影距离 样本点到投影超平面的距离足够近基于最大投影方差 样本点投影在超平面上的方差足够大,能够竟可能的分开,即方差最大方向的分解 ps:什么情况下需要进行降维? 数据集特征数...
2020-04-05 00:45:15 2028
转载 深入理解Transformer及其源码
目录1 模型的思想2 模型的架构3 Embedding3.1 Word Embedding3.2 Positional Embedding4 Encoder4.1 Muti-Head-Attention4.1.1 Self-Attention4.1.2 Add & Norm4.2 Feed-Forward Network5 Decoder5....
2020-04-05 00:43:22 2569
原创 Python:pip从安装到升级
1.如果没有pip,使用ensurepip安装PIP CMD执行命令:python -m ensurepip ensurepip包支持将pip安装程序引导到现有的Python安装或虚拟环境中。这种引导方法反映了这样一个事实:pip是一个独立的项目,有自己的发布周期,最新的可用稳定版本与CPython引用解释器的维护和特性版本捆绑在一起。 在大多数情况下,P...
2020-04-01 17:24:41 589
转载 开源的图数据库Neo4j的安装配置
图形数据库(Graph Database)是NoSQL数据库家族中特殊的存在,用于存储丰富的关系数据,Neo4j 是目前最流行的图形数据库,支持完整的事务,在属性图中,图是由顶点(Vertex),边(Edge)和属性(Property)组成的,顶点和边都可以设置属性,顶点也称作节点,边也称作关系,每个节点和关系都可以由一个或多个属性。Neo4j创建的图是用顶点和边构建一个有向图,其查询语言cyph...
2020-04-01 15:28:45 390
转载 OpenCV:二值化函数cv2.threshold
目录功能作用:(一)简单阈值(二)自适应阈值:(三)Otsu’s二值化功能作用:该功能将固定级阈值应用于多通道阵列。 该函数通常用于从灰度图像中获取二进制图像(v :: compare也可用于此目的)或用于消除噪声,即滤除太小或太小的像素,很大的价值。(一)简单阈值简单阈值当然是最简单,选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了。函数为cv2...
2020-03-31 19:48:15 5791 1
转载 OpenCV中的边缘检测算子
一、Sobel算子定义:sobel算子是一种基于一阶导数的边缘检测算子。原理:该算子的主要原理是使用两个3x3的矩阵对原图进行卷积运算,从而计算出该图在水平和垂直方向上的灰度偏差估计值。如下图所示,Gx,Gy分别是对原图A在水平和垂直方向上的灰度偏差近似值。在求得Gx和Gy后,使用下式可以求出图像中每个点的梯度估计值。此时需要设定一个阈值,当G的值大于阈值时认为该点为边界点...
2020-03-31 17:17:29 1212
转载 学习率(Learning rate)的理解以及如何调整学习率
1. 什么是学习率(Learning rate)? 学习率(Learning rate)作为监督学习以及深度学习中重要的超参,其决定着目标函数能否收敛到局部最小值以及何时收敛到最小值。合适的学习率能够使目标函数在合适的时间内收敛到局部最小值。 这里以梯度下降为例,来观察一下不同的学习率对代价函数的收敛过程的影响(这里以代价函数为凸函数为例): 回顾一下梯度下降的代码: 当学...
2020-03-31 15:30:21 26154
转载 深度学习框架对比TensorFlow、Caffe、Keras、Theano等
TensorFlow链接:https://www.tensorflow.org/对于那些听说过深度学习但还没有太过专门深入的人来说,TensorFlow 是他们最喜欢的深度学习框架,但在这里我要澄清一些事实。在 TensorFlow 的官网上,它被定义为「一个用于机器智能的开源软件库」,但我觉得应该这么定义:TensorFlow 是一个使用数据流图(data flow graphs)进...
2020-03-30 00:21:39 592
转载 不同框架Tensor顺序
N: batch;C: channelH: heightW: widthCaffe 的Blob通道顺序是:NCHW;Tensorflow的tensor通道顺序:默认是NHWC, 也支持NCHW,使用cuDNN会更快;Pytorch中tensor的通道顺序:NCHWTensorRT中的tensor 通道顺序: NCHW————————————————版权声明:本文为C...
2020-03-30 00:14:53 311
转载 CUDA、cuDNN及TF、Caffe等对应关系
CUDA:用于GPU编程的语言,跑TF的时候用了GPU,TF里面很多函数(或者依赖库)是CUDA语言编写的。不同TF版本需要不同的CUDA。 cuDNN:NVIDIA为深度学习,矩阵运算写的一个加速库。CUDA版本必须和cuDNN版本匹配。cuDNN和TF版本匹配与否则无所谓(不过CUDA和TF版本必须匹配,所以cuDNN版本和TF版本是间接依赖关系)。 TF:这个没什么好说的。个人经验,别用...
2020-03-26 15:50:39 1588
转载 Anaconda创建虚拟环境
Anaconda是一个用于科学计算的Python发行版,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。1.Anaconda与conda区别conda可以理解为一个工具,也是一个可执行命令,其核心功能是包管理与环境管理。包管理与pip的使用类似,环境管理则允许用户方便地安装不同版本的python并可以快速切换。conda的设计理念——co...
2020-03-20 22:23:45 170
转载 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。object detection技术的演进:RCNN->S...
2020-03-19 22:27:12 120
原创 PyCharm:引入自定义包报错及解决办法
目录1.Dictionary 目录及Package包区别2.Pycharm目录下的包不能被引用解决办法3.Pycharm 第三方包的引用1.Dictionary 目录及Package包区别Dictionary:在pycharm中就是一个文件夹,放置资源文件,对应于在进行JavaWeb开发时用于放置css/js文件的目录,或者说在进行物体识别时,用来存储背景图像的文件夹。该文件夹...
2020-03-17 23:32:17 6206 2
转载 tf.concat与tf.stack的区别与联系
今天看论文复现的时候遇到tf.stack()这个函数,本来以为是个小函数,结果费了好大劲儿才弄明白,还是记录一下好了。tf.concat与tf.stack这两个函数作用类似,都是在某个维度上对矩阵(向量)进行拼接,不同点在于前者拼接后的矩阵维度不变,后者则会增加一个维度。让我们具体来看一下两者究竟有什么区别,举个栗子。import tensorflow as tfa = tf.cons...
2020-03-17 20:50:36 435
转载 BatchNormalization、LayerNormalization、InstanceNorm、GroupNorm、SwitchableNorm总结
本篇博客总结几种归一化办法,并给出相应计算公式和代码。1、综述1.1 论文链接1、Batch Normalizationhttps://arxiv.org/pdf/1502.03167.pdf2、Layer Normalizaitonhttps://arxiv.org/pdf/1607.06450v1.pdf3、Instance Normalizationhttps:/...
2020-03-17 17:29:18 115
转载 详解TensorFlow数据读取机制(tf.train.string_input_producer)
在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解。确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料。今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下TensorFlow的数据读取机制,文章的最后还会给出实战代码以供参考。TensorFlow读取机制图解首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示...
2020-03-17 16:39:29 2674
原创 Python:深拷贝和浅拷贝的区别
通俗理解:==============================都是引入copy包:import copy1.深拷贝 copy.deepcopy() 原来的对象怎么改都不会影响当前对象,包括原对象及原对象内的子对象。2.浅拷贝copy.copy() ,原对象的子对象list元素改变的话会改变当前对象,如果当前对象中list元素改变了,也同样会影响原对象。深入理解:===...
2020-03-16 15:29:05 180
原创 RNNCell、BasicRNNCell、BasicLSTMCell、LSTMCell、GRUCell
1、学习单步的RNN:RNNCell、BasicRNNCell、BasicLSTMCell、LSTMCell、GRUCell(1)RNNCell如果要学习TensorFlow中的RNN,第一站应该就是去了解“RNNCell”,它是TensorFlow中实现RNN的基本单元,每个RNNCell都有一个call方法,使用方式是:(output, next_state) = call(input...
2020-03-15 15:46:11 2351
转载 Python writerow/writerows 添加数据
通常将网络上爬取的数据存储于本地.csv文件,本贴提供两种方法将数据存储于.csv文件方法1:单行写入with open('xxxx.csv','w',newlines='') as f: writer = csv.writer(f) #创建初始化写入对象 writer.writerow(['color','red']) # 一行一行写入 ['color','red'...
2020-03-09 13:54:47 11500 1
转载 tf.nn.embedding_lookup作用
embedding_lookup做两件事:1.一句话中有m个字,将每个字进行One-hot编码,将一句话转换成二维m行n列的矩阵(词表有n个词)。2.一篇文章有k句话,转换成3维的矩阵。以下为网络上解释:我觉得这张图就够了,实际上tf.nn.embedding_lookup的作用就是找到要寻找的embedding data中的对应的行下的vector。t...
2020-03-09 11:21:32 592 1
转载 sklearn中保存和加载模型的方法
sklearn中保存和加载模型的方法1.载入模块 1 from sklearn.externals import joblib2.保存模型 1 joblib.dump(model,'filename.pkl')3.加载模型 1 model = joblib.load('filename.pkl')4.例子 1 # -*- codin...
2020-03-08 11:08:41 1032
资深产品经理所需的专业素养与能力PPT
2024-09-29
Spring+SpringMVC+Mybatis SSM框架小项目
2019-01-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人