72 73 76 89 82 84 89 81

我们都有梦想,凭什么不努力

二分逼近/牛顿迭代——一元高次非线性方程求解

#include"iostream"
#include"cstdio"
#include"cstring"
#include"cstdlib"
#include"cmath"
#define precision 0.00000001

using namespace std;

int count=0;

//一元多次方程求解
double function(double x)
{
	return 2*x*x+3.2*x-1.8;
}

double binary(double x,double y)
{
	double mid=(x+y)/2.0;
	while(fabs(x-y)>precision)
	{
		if(function(mid)==0) break;
		if(function(x)*function(mid)<0) y=mid;
		else x=mid;
		mid=(x+y)/2;
		count++;
	} 
	return mid;
}

double function2(double x)   //返回导数,高精度代倒数 
{
	return (function(x+0.000005)-function(x-0.000005))/0.00001; 
}

double newtown(double x)
{
	double x1=x-function(x)/function2(x);
	while(fabs(x1-x)>precision)
	{
		if(function(x1)==0) break;
		x=x1;
		x1=x-function(x)/function2(x);
		count++;
	}
	return x1;
}

int main()
{
	cout<<binary(-0.8,8.0)<<endl;
	cout<<count<<endl;
	count=0;
	cout<<newtown(8)<<endl;
	cout<<count<<endl;
	count=0;
	cout<<newtown(-8)<<endl;
	cout<<count<<endl;
	return 0;
} 

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ltyqljhwcm/article/details/52353368
上一篇POJ1308——并查集
下一篇合并果子
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭