从二分逼近领略计算科学的魅力

计算分两种:
数学家们的方法(倾向于给出解析解),
计算机科学家的方法(设计算法,重复的操作交给CPU)

还有一点值得说明的是:
比如 1+2++100 的计算,高斯(等差数列的方法 (Sn+Sn)/2 ,一个前 n 项和为顺序,Sn=1+2++100,第二个为逆序, Sn=100+99++1 )之后,几乎每一个小孩都知道该怎么做,然而呢,我认为,这并(找规律)非计算机的做法,计算机的做法自然是简单的循环遍历相加。类似的例子见三个瓶盖能换一瓶水,问100个人需要喝水,最少需要买多少瓶水即可解决100人的喝水问题(这篇文章提供了两种思路,一种是找规律型的,这是人的智慧或者思考问题的方式,一种是计算机的工作方式)。

比如针对实数域上的函数 f(x) ,如果存在实数 x0 使得 f(x0)=0 ,则 x=x0 是函数 f(x) 零点。如果函数 f(x) 是连续函数,且在区间 [x1,x2] 上是单调函数,只要 f(x1)f(x2)<0 ,就说明在区间 [a,b] 内一定有零点,此时就可使用二分逼近法近似地找到这个零点。这种情况下,可按如下流程实施二分逼近法:

  • m=x1+x22

  • f(x1)f(m)<0x2=m

  • f(x1)f(m)>0x1=m

  • (x2x1)<ϵ?

从上述过程可以看到,每次运算之后,区间范围缩小一半,呈现线性收敛速度。设方程为 f(x)=2x2+3.2x1.8 ,求根精度为 ϵ=109 ,在 [0.8,0.8] 寻找其根;

typedef double (*FuncPtr) (double);
const double Epsilon = 1e-9;

double dichotomyApprox(double x1, double x2, FuncPtr f)
{
    assert(f(x1)*f(x2)<0.0);
    double m = (x1+x2)/2;
    while ((x2-x1)>Epsilon)
    {
        f(x1)*f(m)<0. ? x2 = m : x1 = m;
        m = (x1+x2)/2;
    }
    return m;
}

既然以精度(precision)设限,其实迭代次数是与解的位置无关的,而与精度直接相关,本例精度 ϵ=109 ,采用二分法的形式 229<109<230 ,迭代次数应当在30次左右。



二分逼近求解实数的平方根的应用实例,请见 平方根的计算(二分逼近、牛顿拉普生法)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值