placeholder机制用于输出提供输出数据
相当于定义了一个位置,这个位置中的数据在程序运行时再指定。
优点:1.不需要大龄常量来提供输入数据,而只需要将数据通过placeholder传入。
2.类型确定,维度不一定要给出
import tensorflow as tf
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1))
#定义placeholder作为存放数据的地方。这里的维度不一定要确定
#但如果维度是确定的,那么给出的位都可以降低出错的概率
x = tf.placeholder(tf.float32, shape=(1, 2), name="input")
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)
sess = tf.Session()
init_op = tf.initialize_all_variables()
sess.run(init_op)
#下面一行报错[dtype=DT_FLOAT, shape=[1,2], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
print(sess.run(y))
#正确做法
print(sess.run(y, feed_dict={x: [[0.7,0.9]]}))
对于多个数据,只需要修改x和输出。
x =tf.plcaceholder(tf.float32, shape=(3, 2), name="input")
#中间部分和上面一样
#因为x在定义是指定了n为3,所以在运行前向传播的过程时,需要提供3个样例数据
print(sess.run(y, feed_dict={x: [[0.7,0.9], [0.1,0.4], [0.5,0.8]]}))
反向传播
#定义损失函数来刻画预测值于真实值的差距
cross_entropy = -tf.reduce_mean(y_*tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
#定义学习率
learnning_rate = 0.001
#定义反向传播算法来优化神经网络中的参数
train_step=\
tf.train.AdamOptimizer(learning_ratr).miniminze(cross_entropy)
cross_entropy:反向传播损失函数
tf.train.AdamOptimizer:优化方法
sess.run(train_step)进行优化