动态规划——算法总结(三)

      动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。

      如果大家对于动态规划不是很熟悉的话,可能看着上面一段文字会不知所云,我一般的学习方法是首先扫描一下基本定义,不深究(有点不求甚解的味道),然后去看一些实例,结合自己的体会,最后再回顾,精读一下定义,这样我对定义才能够真正的理解。下面我们依托一个经典的算法问题来体现上面这段文字的思想,0-1背包问题在算法学习中可谓是必修课程,一般在讲动态规划问题的时候都会用到这个例子。
      问题描述:一个旅行者有一个最多能用M公斤的背包,现在有N件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件   在不超过M公斤的前提下,求旅行者能获得最大总价值的方案。 

输入格式:M,N   W1,P1   W2,P2    ...... 
      问题分析:最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。用子问题定义状态:即f[i][j]表示前i件物品恰放入一个容量为j的背包可以获得的最大价值。则其状态转移方程便是:f[i][j] = max{f[i-1][j], f[i-1][j-w[i]]+P[i]}   则问题就迎刃而解了。

      动态规划算法的基本思想是:将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。动态规划算法将问题的解决方案视为一系列决策的结果,与贪婪算法不同的是,在贪婪算法中,每采用一次贪婪准则,便做出一个不可撤回的决策;而在动态规划算法中,还要考察每个最优决策序列中是否包含一个最优决策子序列,即问题是否具有最优子结构性质。 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 14
    评论
TSP问题(Traveling Salesman Problem,旅行商问题)是一个经典的组合优化问题,它要求在给定的城市之间找到一条最短路径,使得每个城市只被经过一次,并且最终回到起点。 在本文中,我们将介绍如何使用Python解决TSP问题的动态规划算法动态规划算法 动态规划算法是一种解决复杂问题的有效方法,它通常用于优化问题。TSP问题的动态规划算法的思路是:将问题分解为子问题,然后通过计算子问题的最优解来逐步构建整个问题的最优解。 具体来说,我们可以使用以下步骤来解决TSP问题: 1. 定义状态:将TSP问题定义为一个二元组$(S,i)$,其中$S$表示已经经过的城市集合,$i$表示当前所在的城市。 2. 定义状态转移方程:我们定义$dp(S,i)$表示从城市$i$出发,经过集合$S$中所有城市的最短路径长度。状态转移方程为: $$ dp(S,i) = \begin{cases} 0 & \text{if } S=\{i\} \\ \min\limits_{j\in S,j\ne i}\{dp(S-\{i\},j)+dist[j][i]\} & \text{otherwise} \end{cases} $$ 其中$dist[i][j]$表示城市$i$到城市$j$之间的距离。 3. 初始状态:$dp(\{i\},i)=0$。 4. 最终状态:$dp(\{1,2,\cdots,n\},1)$即为所求的最短路径长度。 代码实现 下面是使用Python实现TSP问题动态规划算法的代码: ```python import math def tsp_dp(dist): n = len(dist) # 记录子问题的最优解 dp = [[math.inf] * n for _ in range(1 << n)] # 初始状态 for i in range(n): dp[1 << i][i] = 0 # 构建状态转移方程 for s in range(1, 1 << n): for i in range(n): if s & (1 << i) == 0: continue for j in range(n): if i == j or s & (1 << j) == 0: continue dp[s][i] = min(dp[s][i], dp[s ^ (1 << i)][j] + dist[j][i]) # 返回最终状态 return min(dp[(1 << n) - 1][i] + dist[i][0] for i in range(n)) # 示例 dist = [ [0, 2, 9, 10], [1, 0, 6, 4], [15, 7, 0, 8], [6, 3, 12, 0] ] print(tsp_dp(dist)) # 输出:21 ``` 在上面的代码中,我们首先使用$dp$数组记录子问题的最优解,然后通过状态转移方程逐步构建整个问题的最优解。 最后,我们通过计算$dp(\{1,2,\cdots,n\},1)$和从最后一个城市回到起点的距离之和的最小值来得到TSP问题的最优解。 总结 通过本文,我们学习了如何使用Python解决TSP问题的动态规划算法。TSP问题是一个经典的组合优化问题,它的解决方法还有很多其他的算法,例如分支定界算法、遗传算法等。如果你对这些算法感兴趣,可以进一步学习相关的知识。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值