题目说明:
给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]*...*A[n-1]。不能使用除法。
解决方案:B数组中元素可以堪称将A数组中的第i个元素换成1后的所有元素的乘积,可以将A数组中的对角线元素全看成1,因为对角线元素不相乘,即可看成1。代码实现时分成两个循环,第一个循环实现数组A对角线左下角的元素的相乘,赋值给B中相应的元素;第二个循环,完成数组A对角线右上角元素的相乘后得到的值,与第一个循环中得到的左下角元素乘积值相乘,得到题目想的到的最后的值。
代码如下:
# -*- coding:utf-8 -*-
class Solution:
def multiply(self, A):
# write code here
n = len(A)
B = [1]*n
#计算A对角线左下角元素的相乘值
for i in range(1,n):
B[i] = B[i-1] * A[i-1]
#计算A对角线右下角元素的相乘值,并与左下角元素相乘
temp = 1
for j in range(n-2, -1, -1):#只需考虑到n-2即可,第一个循环中已得到B[n-1]的最终值
temp *= A[j+1]
B[j] *= temp
return B
提交结果: