2020 各大厂分享ppt

1.用户增长

  • 数据技术驱动全渠道用户触达(网易严选)
  • 有赞数据驱动增长体系的建设(有赞)
  • 基于doris构建的小程序私域流量增长(智能小程序)

2.知识图谱

  • 百度知识图谱技术及应用(百度)
  • 美团大脑系列商品知识图谱的构建及应用(美团)
  • 基于事理图谱的智能培训(贝壳)

3.推荐算法

  • 深度树匹配召回体系演进(阿里妈妈)
  • 粗排技术体系与最新进展(阿里)
  • EdgeRec:边缘计算在推荐系统中的应用(阿里)
  • 算力效能技术体系@阿里定向广告(阿里妈妈)
  • 多目标排序在快手短视频推荐中的实践(快手)
  • 多业务融合推荐场景下的深度学习实践(58同城)

4.风控安全

  • 模型可解释性在保险理赔反欺诈中的应用实践(中国人寿)

5.大数据架构

  • 如何让Ozone成为HDFS的下一代分布式存储系统(腾讯)
  • Data Quality Architecture at Tubi(tubi)
  • 结构化大数据链路在车好多的实践(车好多)
  • 基于Apache Hudi构建数据湖上低延迟CDC的实践(T3出行)
  • 基于Logi-KafkaManager打造专业易用KafkaPAAS服务(滴滴)

6.自然语言处理

  • Volctrans: Application and Research(volctrans)
  • 阿里多语言翻译模型的前沿探索以及技术实践(阿里巴巴)
  • 小米对机器翻译的探索和实践(小米)
  • LightSeq: 高性能NLP序列推理实践
  • 细粒度文本情感分析及其应用(华为云)

7.数据仓库

  • 滴滴指标体系建设实践分享(滴滴)
  • 陌陌大数据治理与优化实践(陌陌)
  • 贝壳基于Apache Druid的OLAP引擎应用实践(贝壳)
  • 金融资管数据中台体系的探索和实践(北京熵简)
  • 云数据库clickhouse技术分享暨海量数据分析场景应用实践(阿里云)

8.数据产品

  • AI手机产品化实践与思考
  • 转变,贝壳找房数据平台演进(贝壳)
  • 全链路市场投放的数据产品(网易严选)

9.大数据应用

  • 基于大数据技术构建爱奇艺全链路监控平台(爱奇艺)
  • 数据湖的初步探索与实践落地(bilibili)
  • 爱奇艺数据中台服务化建设(爱奇艺)
  • Impala 3.4在网易的优化实践(网易)
  • Doris 在⼩小⽶米数据中台中的应⽤(小米)

10.广告算法

  • 阿⾥妈妈定向⼴告智能投放体系和技术(阿里妈妈)
  • 短视频场景下信息流广告的挑战和技术(快手)
  • 因果推断在飞猪广告预算分配中的应用(飞猪技术)

11.计算机视觉

  • 视频技术技术在百度的应用(百度)
  • 计算机视觉中的自监督学习 与Transformer注意力(微软亚洲)
  • 一种面向自然场景下的低质文本识别方法(图匠数据)
  • 边缘计算时代下的计算机视觉技术落地实践(地平线)
  • 多媒体内容理解在美图社区的应⽤实践(美图)

12.搜索算法

  • 5G+智能时代的多模搜索技术(百度)
  • 搜狗搜索精准问答技术研究与应用(搜狗)

13.机器学习平台

  • vGPU在机器学习平台中的多场景应用(小米)
  • Data Provider Solution for DLT on Brain++(旷视)
  • 58深度学习平台在提高模型推 理性能和 GPU使用率上实践(58同城)

14.数据治理

  • 美团酒旅数据治理实践(美团)
  • 网易严选数据任务治理实践(网易严选)
  • 有赞数据治理之提质降本(有赞)
### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

腾讯AI架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值