python机器学习案例系列教程——CTR/CVR中的FM、FFM算法

全栈工程师开发手册 (作者:栾鹏)
python教程全解

FM问题来源

CTR/CVR预测时,用户的性别、职业、教育水平、品类偏好,商品的品类等,经过One-Hot编码转换后都会导致样本数据的稀疏性。特别是商品品类这种类型的特征,如商品的末级品类约有550个,采用One-Hot编码生成550个数值特征,但每个样本的这550个特征,有且仅有一个是有效的(非零)。由此可见,数据稀疏性是实际问题中不可避免的挑战。

One-Hot编码的另一个特点就是导致特征空间大。例如,商品品类有550维特征,一个categorical特征转换为550维数值特征,特征空间剧增。

同时通过观察大量的样本数据可以发现,某些特征经过关联之后,与label之间的相关性就会提高。例如,“USA”与“Thanksgiving”、“China”与“Chinese New Year”这样的关联特征,对用户的点击有着正向的影响。换句话说,来自“China”的用户很可能会在“Chinese New Year”有大量的浏览、购买行为,而在“Thanksgiving”却不会有特别的消费行为。这种关联特征与label的正向相关性在实际问题中是普遍存在的,如“化妆品”类商品与“女”性,“球类运动配件”的商品与“男”性,“电影票”的商品与“电影”品类偏好等。因此,引入两个特征的组合是非常有意义的。

FM基本原理

多项式模型是包含特征组合的最直观的模型。在多项式模型中,特征 x i x_i xi x j x_j xj 的组合采用 x i x j x_ix_j xixj表示,即 x i x_i xi x j x_j xj 都非零时,组合特征 x i x j x_ix_j xixj 才有意义。从对比的角度,本文只讨论二阶多项式模型。模型的表达式如下

y ( x ) = w 0 + ∑ i = 1 n w i x i + ∑ i = 1 n ∑ j = i + 1 n w i j x i x j (1) y(x) = w_0+ \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n w_{ij} x_i x_j \tag{1} y(x)=w0+i=1nwixi+i=1nj=i+1nwijxixj(1)

其中, n n n 代表样本的特征数量, x i x_i xi 是第 i i i 个特征的值, w 0 w_0 w0 w i w_i wi w i j w_{ij} wij是模型参数。

从公式(1)可以看出,组合特征的参数一共有 n ( n − 1 ) 2 \frac{n(n−1)}{2} 2n(n1)个,任意两个参数都是独立的。然而,在数据稀疏性普遍存在的实际应用场景中,二次项参数的训练是很困难的。其原因是,每个参数 w i j w_{ij} wij的训练需要大量 x i x_i xi x j x_j xj 都非零的样本;由于样本数据本来就比较稀疏,满足“ x i x_i xi x j x_j xj 都非零”的样本将会非常少。训练样本的不足,很容易导致参数 w i j w_{ij} wij 不准确,最终将严重影响模型的性能。

系数矩阵分解

那么,如何解决二次项参数的训练问题呢?矩阵分解提供了一种解决思路。与在model-based的协同过滤中,一个rating矩阵可以分解为user矩阵和item矩阵。

对于对称矩阵W,
W = ( ω 11 ω 12 . . . ω 1 n ω 21 ω 22 . . . ω 2 n ⋮ ⋮ ⋱ ⋮ ω n 1 ω n 2 . . . ω n n ) n × n W= \begin{pmatrix} \omega_{11} & \omega_{12}& ... &\omega_{1n} \\ \omega_{21} & \omega_{22}& ... &\omega_{2n} \\ \vdots &\vdots &\ddots &\vdots\\ \omega_{n1} & \omega_{n2}& ... &\omega_{nn} \\ \end{pmatrix}_{n\times n} W=ω11ω21ωn1ω12ω22ωn2.........ω1nω2nωnnn×n

由于直接求解W不方便,因此我们引入隐变量V:
V = ( v 11 v 12 . . . v 1 k v 21 v 22 . . . v 2 k ⋮ ⋮ ⋱ ⋮ v n 1 v n 2 . . . v n k ) n × k = ( V 1 T V 2 T ⋯ V n T ) V= \begin{pmatrix} v_{11} & v_{12}& ... &v_{1k} \\ v_{21} & v_{22}& ... &v_{2k} \\ \vdots &\vdots &\ddots &\vdots\\ v_{n1} & v_{n2}& ... &v_{nk} \\ \end{pmatrix}_{n\times k}=\begin{pmatrix} V_1^T\\ V_2^T\\ \cdots \\ V_n^T\\ \end{pmatrix} V=v11v21vn1v12v22vn2.........v1kv2kvnkn×k=V1TV2TVnT

满足
V V T = W VV^T = W VVT=W

V V V 的第$ j 列 列 v_j 便 是 第 便是第 便 j $维特征的隐向量。换句话说,每个参数 w i j = ⟨ v i , v j ⟩ w_{ij}=⟨v_i,v_j⟩ wij=vi,vj,这就是FM模型的核心思想。因此,FM的模型方程为(本文不讨论FM的高阶形式)

y ( x ) = w 0 + ∑ i = 1 n w i x i + ∑ i = 1 n ∑ j = i + 1 n < v i , v j > x i x j (2) y(x) = w_0+ \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n<v_i, v_j >x_i x_j \tag{2} y(x)=w0+i=1nwixi+i=1nj=i+1n<vi,vj>xixj(2)

参数个数

$ v_i $是第 $ i $ 维特征的隐向量,$ <·,·> $ 代表向量点积。隐向量的长度为 $ k ( k << n $),包含 $ k $ 个描述特征的因子。根据公式2,二次项的参数数量减少为 $ kn $个,远少于多项式模型的参数数量。另外,参数因子化使得 $ x_h x_i $ 的参数和 $ x_i x_j $ 的参数不再是相互独立的,因此我们可以在样本稀疏的情况下相对合理地估计FM的二次项参数。具体来说,$ x_h x_i $ 和 $ x_i x_j $ 的系数分别为 $ <v_h,v_i> $ 和 $ <v_i, v_j>$,它们之间有共同项 $ v_i 。 也 就 是 说 , 所 有 包 含 “ 。也就是说,所有包含“ x_i $ 的非零组合特征”(存在某个 $ j\neq i $,使得 $ x_i x_j \neq 0 $)的样本都可以用来学习隐向量 $ v_i , 这 很 大 程 度 上 避 免 了 数 据 稀 疏 性 造 成 的 影 响 。 而 在 多 项 式 模 型 中 , ,这很大程度上避免了数据稀疏性造成的影响。而在多项式模型中, w_{hi} $ 和 $ w_{ij} $ 是相互独立的。

预测时间复杂度

显而易见,公式(2)是一个通用的拟合方程,可以采用不同的损失函数用于解决回归、二元分类等问题,比如可以采用MSE(Mean Square Error)损失函数来求解回归问题,也可以采用Hinge/Cross-Entropy损失来求解分类问题。当然,在进行二元分类时,FM的输出需要经过sigmoid变换,这与Logistic回归是一样的。

当我们已经求出所有参数以后,对新输入对象进行预测时,FM的计算复杂度是 O ( k n 2 ) O(kn^2) O(kn2)。但是,通过公式(3)的等式,FM的二次项可以化简,其复杂度可以优化到 O ( k n ) O(kn) O(kn)。由此可见,FM可以在线性时间对新样本作出预测

∑ i = 1 n ∑ j = i + 1 n ⟨ v i , v j ⟩ x i x j = 1 2 ∑ f = 1 k ( ( ∑ i = 1 n v i , f x i ) 2 − ∑ i = 1 n v i , f 2 x i 2 ) (3) \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j = \frac{1}{2} \sum_{f=1}^k \left(\left( \sum_{i=1}^n v_{i, f} x_i \right)^2 - \sum_{i=1}^n v_{i, f}^2 x_i^2 \right) \tag{3} i=1nj=i+1nvi,vjxixj=21f=1k(i=1nvi,fxi)2i=1nvi,f2xi2(3)

梯度下降法

利用SGD(Stochastic Gradient Descent)训练模型。模型各个参数的梯度如下

∂ ∂ θ y ( x ) = { 1 , if    θ    is    w 0 x i , if    θ    is    w i x i ∑ j = 1 n v j , f x j − v i , f x i 2 , if    θ    is    v i , f \frac{\partial}{\partial\theta} y (\mathbf{x}) = \left\{\begin{array}{ll} 1, & \text{if}\; \theta\; \text{is}\; w_0 \\ x_i, & \text{if}\; \theta\; \text{is}\; w_i \\ x_i \sum_{j=1}^n v_{j, f} x_j - v_{i, f} x_i^2, & \text{if}\; \theta\; \text{is}\; v_{i, f} \end{array}\right. θy(x)=1,xi,xij=1nvj,fxjvi,fxi2,ifθisw0ifθiswiifθisvi,f

其中,$ v_{j, f} $ 是隐向量 $ v_j $ 的第 $ f $ 个元素。由于 $ \sum_{j=1}^n v_{j, f} x_j $ 只与 $ f $ 有关,而与 $ i $ 无关,在每次迭代过程中,只需计算一次所有 $ f $ 的 $ \sum_{j=1}^n v_{j, f} x_j $,就能够方便地得到所有 $ v_{i, f} $ 的梯度。显然,计算所有 $ f $ 的 $ \sum_{j=1}^n v_{j, f} x_j $ 的复杂度是 $ O(kn) $;已知 $ \sum_{j=1}^n v_{j, f} x_j $ 时,计算每个参数梯度的复杂度是 $ O(1) $;得到梯度后,更新每个参数的复杂度是 $ O(1) $;模型参数一共有 $ nk + n + 1 $ 个。因此,FM参数训练的复杂度也是 $ O(kn) $。综上可知,FM可以在线性时间训练和预测,是一种非常高效的模型。

FFM原理

背景及基本原理

在FM模型中,每一个特征会对应一个隐变量,但在FFM模型中,认为应该将特征分为多个field,每个特征对应每个field分别有一个隐变量。

举个例子,我们的样本有3种类型的字段:publisher, advertiser, gender,分别可以代表媒体,广告主或者是具体的商品,性别。其中publisher有5种数据,advertiser有10种数据,gender有男女2种,经过one-hot编码以后,每个样本有17个特征,其中只有3个特征非空。简单来说,同一个categorical特征经过One-Hot编码生成的数值特征都可以放到同一个field。

如果使用FM模型,则17个特征,每个特征对应一个隐变量。
如果使用FFM模型,则17个特征,每个特征对应3个隐变量,即每个类型对应一个隐变量,具体而言,就是对应publisher, advertiser, gender三个field各有一个隐变量。

在FFM中,每一维特征 x i x_i xi,针对其它特征的每一种field f j f_j fj其中 f j f_j fj表示第j维特征所属的field),都会学习一个隐向量 v i , f j v_{i,f_j} vi,fj。因此,隐向量不仅与特征相关,也与field相关。也就是说,“Day=26/11/15”这个特征与“国家”特征和“广告类型"特征进行关联的时候使用不同的隐向量,这与“国家”和“广告类型”的内在差异相符

假设样本的 n n n 个特征属于 f f f 个field,那么FFM的二次项有 n f nf nf个隐向量。而在FM模型中,每一维特征的隐向量只有一个。FM可以看作FFM的特例,是把所有特征都归属到一个field时的FFM模型。根据FFM的field敏感特性,可以导出其模型方程。

y ( x ) = w 0 + ∑ i = 1 n w i x i + ∑ i = 1 n ∑ j = i + 1 n < v i , f j , v j , f i > x i x j (4) y(x) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n < v_{i, f_j}, v_{j, f_i} > x_i x_j \tag{4} y(x)=w0+i=1nwixi+i=1nj=i+1n<vi,fj,vj,fi>xixj(4)

其中, f j f_j fj 是第 j j j 个特征所属的field。如果隐向量的长度为 k k k,那么FFM的二次参数有 n f k nfk nfk 个,远多于FM模型的 n k nk nk 个。此外,由于隐向量与field相关,FFM二次项并不能够化简,其预测复杂度是 O ( k n 2 ) O(kn^2) O(kn2)

下面以一个例子简单说明FFM的特征组合方式[9]。输入记录如下

下面以一个例子简单说明FFM的特征组合方式[9]。输入记录如下

用户电影电影类型价格
user1三傻喜剧, 戏剧$9.99

这条记录可以编码成5个特征,其中“电影类型=喜剧”和“电影类型=戏剧”属于同一个field,“Price”是数值型,不用One-Hot编码转换。为了方便说明FFM的样本格式,我们将所有的特征和对应的field映射成整数编号。

field nameField indexFeature nameFeature index
User1User=YuChin1
Movie2Movie=3Idiots2
Genre3Genre=Comedy3
Genre=Drama4
Price4Price5

那么,FFM的组合特征有10项,如下图所示。
KaTeX parse error: No such environment: align* at position 7: \begin{̲a̲l̲i̲g̲n̲*̲}̲\begin{array}{r…

二次项的系数是通过与特征field相关的隐向量点积得到的,二次项共有 n ( n − 1 ) 2 \frac{n(n−1)}{2} 2n(n1) 个。

事实上,在大多数情况下,FFM模型只保留了二次项部分,省略常数项和一次项,即:

ϕ ( V , x ) = ∑ i = 1 n ∑ j = i + 1 n < v i , f j , v j , f i > x i x j = ∑ i = 1 n ∑ j = i + 1 n ( v i , f j T v j , f i ) x i x j \phi(V,x) = \sum_{i=1}^n \sum_{j=i+1}^n < v_{i, f_j}, v_{j, f_i} > x_i x_j =\sum_{i=1}^n \sum_{j=i+1}^n (v^T_{i, f_j}v_{j, f_i} ) x_i x_j ϕ(V,x)=i=1nj=i+1n<vi,fj,vj,fi>xixj=i=1nj=i+1n(vi,fjTvj,fi)xixj

最优化问题

FFM模型采用logistic loss作为损失函数,和L2惩罚项,因此只能用于二元分类问题。根据逻辑回归的损失函数及分析,可以得出FFM的最优化问题为:

min ⁡ v ∑ i = 1 L log ⁡ ( 1 + exp ⁡ { − y i ϕ ( v , x i ) } ) + λ 2 ∥ v ∥ 2 \min_{\mathbf{v}} \sum_{i=1}^L \log \big( 1 + \exp\{ -y_i \phi (\mathbf{v}, \mathbf{x}_i ) \} \big) + \frac{\lambda}{2} \| \mathbf{v} \|^2 vmini=1Llog(1+exp{yiϕ(v,xi)})+2λv2

中, y i ∈ { − 1 , 1 } y_i∈\{−1,1\} yi{1,1} 是第 i i i 个样本的label, L L L 是训练样本数量, λ λ λ是惩罚项系数。模型采用SGD优化

FFM代码实现

符号约定:
n n n:特征的维数

m m m:域的个数

k k k:隐向量的维度

j j j:在特征中的下标

f f f:在域中的下标

d d d:在隐向量中的下标

l l l:样本的总数

粗体字母表示向量或矩阵

特征组合

最基本的线性加权

ϕ L M ( w , x ) = ∑ i = 1 n w i x i \phi_{LM}(\textbf{w},\textbf{x})=\sum_{i=1}^n{w_ix_i} ϕLM(w,x)=i=1nwixi

任意特征两两组合

ϕ p o l y 2 ( w , x ) = ∑ j 1 = 1 n ∑ j 2 = j 1 + 1 n w j 1 , j 2 x j 1 x j 2 \phi_{poly2}(\textbf{w},\textbf{x})=\sum_{j1=1}^n{\sum_{j2=j1+1}^n{w_{j1,j2}x_{j1}x_{j2}}} ϕpoly2(w,x)=j1=1nj2=j1+1nwj1,j2xj1xj2

w w w是一个对称方阵,即 w j 1 , j 2 = w j 2 , j 1 w_{j1,j2}=w_{j2,j1} wj1,j2=wj2,j1,可以用矩阵分解法来拟合 w w w

w j 1 , j 2 = v j 1 ⋅ v j 2 = v j 2 ⋅ v j 1 = w j 2 , j 1 w_{j1,j2}=\textbf{v}_{j1}\cdot\textbf{v}_{j2}=\textbf{v}_{j2}\cdot\textbf{v}_{j1}=w_{j2,j1} wj1,j2=vj1vj2=vj2vj1=wj2,j1

矩阵 w w w的规模是 n × n n×n n×n,矩阵 v v v的规模是 n × k n×k n×k k ≪ n k≪n kn。实际上我们已经推导出了因子分解法。

因子分解法FM
ϕ F M ( w , x ) = ∑ j 1 = 1 n ∑ j 2 = j 1 + 1 n w j 1 ⋅ w j 2 x j 1 x j 2 \phi_{FM}(\textbf{w},\textbf{x})=\sum_{j1=1}^n{\sum_{j2=j1+1}^n{\textbf{w}_{j1}\cdot \textbf{w}_{j2}x_{j1}x_{j2}}} ϕFM(w,x)=j1=1nj2=j1+1nwj1wj2xj1xj2

这里的 w j w_j wj相当于上面的 v j v_j vj

域感知的因子分解法FFM

ϕ F F M ( w , x ) = ∑ j 1 = 1 n ∑ j 2 = j 1 + 1 n w j 1 , f 2 ⋅ w j 2 , f 1 x j 1 x j 2 \phi_{FFM}(\textbf{w},\textbf{x})=\sum_{j1=1}^n{\sum_{j2=j1+1}^n{\textbf{w}_{j1,f2}\cdot \textbf{w}_{j2,f1}x_{j1}x_{j2}}} ϕFFM(w,x)=j1=1nj2=j1+1nwj1,f2wj2,f1xj1xj2

在FM中w是规模为 n × k F M n×k_{FM} n×kFM的二维矩阵,而在FFM中 w w w是规模为 n × m × k F F M n×m×k_{FFM} n×m×kFFM的三维矩阵, k F F M ≪ k F M k_{FFM}≪k_{FM} kFFMkFM

逻辑回归二分类

决策函数

y ^ = 1 1 + e x p ( − ϕ F F M ( w , x ) ) \hat{y}=\frac{1}{1+exp(-\phi_{FFM}(\textbf{w},\textbf{x}))} y^=1+exp(ϕFFM(w,x))1

带L2正则的目标函数

min ⁡ w      λ 2 ∥ w ∥ 2 2 + ∑ i = 1 l l o g ( 1 + e x p ( − y i ϕ F F M ( w , x i ) ) ) \min_{\textbf{w}}\;\;\frac{\lambda}{2}\parallel w\parallel_2^2+\sum_{i=1}^llog(1+exp(-y_i\phi_{FFM}(\textbf{w},\textbf{x}_i))) wmin2λw22+i=1llog(1+exp(yiϕFFM(w,xi)))

其中 y i ∈ { − 1 , 1 } y_i∈\{−1,1\} yi{1,1},注意,虽然在预测结果出来的是0-1之间数,但是训练时的y值取-1或1,所以当训练结束后,及测试集上测试,评估模型时,要将测试集的y值转换为0-1。

在SGD中每次只需要考虑一个样本的损失,此时目标函数为

min ⁡ w      λ 2 ∥ w ∥ 2 2 + l o g ( 1 + e x p ( − y ϕ F F M ( w , x ) ) ) \min_{\textbf{w}}\;\;\frac{\lambda}{2}\parallel w\parallel_2^2+log(1+exp(-y\phi_{FFM}(\textbf{w},\textbf{x}))) wmin2λw22+log(1+exp(yϕFFM(w,x)))

梯度

g j 1 , f 2 = λ ⋅ w j 1 , f 2 + κ ⋅ w j 2 , f 1 x j 1 x j 2 \textbf{g}_{j1,f2}=\lambda\cdot\textbf{w}_{j1,f2}+\kappa\cdot\textbf{w}_{j2,f1}x_{j1}x_{j2} gj1,f2=λwj1,f2+κwj2,f1xj1xj2

g j 2 , f 1 = λ ⋅ w j 2 , f 1 + κ ⋅ w j 1 , f 2 x j 1 x j 2 \textbf{g}_{j2,f1}=\lambda\cdot\textbf{w}_{j2,f1}+\kappa\cdot\textbf{w}_{j1,f2}x_{j1}x_{j2} gj2,f1=λwj2,f1+κwj1,f2xj1xj2

梯度之所会这么简单,依赖一个很重要的前提:同一个域下的各个特征只有一个是非0值。

其中

κ = ∂ l o g ( 1 + e x p ( − y ϕ F F M ( w , x ) ) ) ∂ ϕ F F M ( w , x ) = − y 1 + e x p ( y ϕ F F M ( w , x ) ) \kappa=\frac{\partial log(1+exp(-y\phi_{FFM}(\textbf{w},\textbf{x})))}{\partial\phi_{FFM}(\textbf{w},\textbf{x})}=\frac{-y}{1+exp(y\phi_{FFM}(\textbf{w},\textbf{x}))} κ=ϕFFM(w,x)log(1+exp(yϕFFM(w,x)))=1+exp(yϕFFM(w,x))y

AdaGrad更新w

( G j 1 , f 2 ) d ← ( G j 1 , f 2 ) d + ( g j 1 , f 2 ) d 2 (G_{j1,f2})_d\gets(G_{j1,f2})_d+(g_{j1,f2})_d^2 (Gj1,f2)d(Gj1,f2)d+(gj1,f2)d2
( G j 2 , f 1 ) d ← ( G j 2 , f 1 ) d + ( g j 2 , f 1 ) d 2 (G_{j2,f1})_d\gets(G_{j2,f1})_d+(g_{j2,f1})_d^2 (Gj2,f1)d(Gj2,f1)d+(gj2,f1)d2
( w j 1 , f 2 ) d ← ( w j 1 , f 2 ) d − η ( G j 1 , f 2 ) d ( g j 1 , f 2 ) d (w_{j1,f2})_d\gets(w_{j1,f2})_d-\frac{\eta}{\sqrt{(G_{j1,f2})_d}}(g_{j1,f2})_d (wj1,f2)d(wj1,f2)d(Gj1,f2)d η(gj1,f2)d
( w j 2 , f 1 ) d ← ( w j 2 , f 1 ) d − η ( G j 2 , f 1 ) d ( g j 2 , f 1 ) d (w_{j2,f1})_d\gets(w_{j2,f1})_d-\frac{\eta}{\sqrt{(G_{j2,f1})_d}}(g_{j2,f1})_d (wj2,f1)d(wj2,f1)d(Gj2,f1)d η(gj2,f1)d

初始化 G d = 1 G_d=1 Gd=1,这样在计算 η G d \frac{\eta}{\sqrt{G_d}} Gd η时既可以防止分母为0,又可以避免该项太大或太小。

η η η是学习率,通常可取0.01。

初始的 w w w可以从均匀分布中抽样 w ∼ U ( 0 , 1 k ) \textbf{w}\sim U(0,\frac{1}{\sqrt{k}}) wU(0,k 1)
实现发现将每个 x x x归一化,即模长为1,在测试集得到的准确率会稍微好一点且对参数不太敏感。

FM代码示例

这里我们使用pyfm库。

FM和FFM的优势在于处理标称属性数据集再one-hot编码特征时形成的稀疏特征矩阵。所以pyfm库处理的矩阵,必须为稀疏矩阵。

import numpy as np
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
import pylibfm
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
import  scipy.sparse
from sklearn.metrics import log_loss

X, y = make_classification(n_samples=1000,n_features=100, n_clusters_per_class=1)  # 1000个样本,100个特征,默认2分类

# 直接转化为稀疏矩阵,对有标称属性的数据集不能处理。
# X = scipy.sparse.csr_matrix(X)
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

# 由于大部分情况下,数据特征都是标称属性,所以需要先转化为字典,再转化稀疏矩阵。(转化为系数矩阵的过程中标称数据自动one-hot编码,数值属性保留)
data = [ {v: k for k, v in dict(zip(i, range(len(i)))).items()}  for i in X]  # 对每个样本转化为一个字典,key为特征索引(0-99),value为特征取值
X_train, X_test, y_train, y_test = train_test_split(data, y, test_size=0.1, random_state=42)

v = DictVectorizer()
X_train = v.fit_transform(X_train)  # 转化为稀疏矩阵的形式,fm算法只能是被这种格式
X_test = v.transform(X_test)  # 转化为稀疏矩阵的形式,fm算法只能是被这种格式
# print(X_train.toarray())   # 打印二维矩阵形式



# 建模、训练、预测、评估
fm = pylibfm.FM(num_factors=50, num_iter=10, verbose=True, task="classification", initial_learning_rate=0.0001, learning_rate_schedule="optimal")
fm.fit(X_train,y_train)
y_pred_pro = fm.predict(X_test)  # 预测正样本概率
print("fm算法 验证集log损失: %.4f" % log_loss(y_test,y_pred_pro))


lr = LogisticRegression(verbose=True)
lr.fit(X_train,y_train)
y_pred_pro = lr.predict(X_test)  # 预测正样本概率
print("逻辑回归 验证集log损失: %.4f" % log_loss(y_test,y_pred_pro))
#

输出结果中
fm算法 验证集log损失: 1.8714
[LibLinear]逻辑回归 验证集log损失: 7.2532

FFM代码实例

import numpy as np

np.random.seed(0)
import math
from logistic import Logistic


# 该类表示一个样本的一个特征
class FFM_Node(object):
    '''
    通常x是高维稀疏向量,所以用链表来表示一个x,链表上的每个节点是个3元组(j,f,v),表示一个样本x的一个非0特征
    '''
    __slots__ = ['j', 'f', 'v']  # 按元组(而不是字典)的方式来存储类的成员属性

    def __init__(self, j, f, v):
        '''
        :param j: Feature index (0 to n-1)
        :param f: Field index (0 to m-1)
        :param v: value
        '''
        self.j = j
        self.f = f
        self.v = v


class FFM(object):
    def __init__(self, m, n, k, eta, lambd):
        # m 域个数,n特征个数,k隐变量维度,eta学习速率,lambd正则系数
        self.m = m
        self.n = n
        self.k = k
        # 超参数
        self.eta = eta
        self.lambd = lambd
        # 初始化三维权重矩阵w~U(0,1/sqrt(k))
        self.w = np.random.rand(n, m, k) / math.sqrt(k)
        # 初始化累积梯度平方和为,AdaGrad时要用到,防止除0异常
        self.G = np.ones(shape=(n, m, k), dtype=np.float64)
        self.log = Logistic()

    # 特征组合式的线性加权求和
    def phi(self, node_list):
        #  node_list: 一个样本,用链表存储x中的非0值
        z = 0.0
        for a in range(len(node_list)):
            node1 = node_list[a]
            j1 = node1.j
            f1 = node1.f
            v1 = node1.v
            for b in range(a + 1, len(node_list)):
                node2 = node_list[b]
                j2 = node2.j
                f2 = node2.f
                v2 = node2.v
                w1 = self.w[j1, f2]
                w2 = self.w[j2, f1]
                z += np.dot(w1, w2) * v1 * v2  # 域感知的因子分解法FFM
        return z

    # 输入x,预测y的值
    def predict(self, node_list):
        # node_list: 用链表存储x中的非0值
        z = self.phi(node_list)
        y = self.log.decide_by_tanh(z)
        return y

    # 根据一个样本来更新模型参数
    def sgd(self, node_list, y):
        # node_list: 用链表存储x中的非0值。 y: 正样本1,负样本-1
        kappa = -y / (1 + math.exp(y * self.phi(node_list)))
        for a in range(len(node_list)):
            node1 = node_list[a]
            j1 = node1.j
            f1 = node1.f
            v1 = node1.v
            for b in range(a + 1, len(node_list)):
                node2 = node_list[b]
                j2 = node2.j
                f2 = node2.f
                v2 = node2.v
                c = kappa * v1 * v2
                # self.w[j1,f2]和self.w[j2,f1]是向量,导致g_j1_f2和g_j2_f1也是向量
                g_j1_f2 = self.lambd * self.w[j1, f2] + c * self.w[j2, f1]
                g_j2_f1 = self.lambd * self.w[j2, f1] + c * self.w[j1, f2]
                # 计算各个维度上的梯度累积平方和
                self.G[j1, f2] += g_j1_f2 ** 2  # 所有G肯定是大于0的正数,因为初始化时G都为1
                self.G[j2, f1] += g_j2_f1 ** 2
                # AdaGrad
                self.w[j1, f2] -= self.eta / np.sqrt(self.G[j1, f2]) * g_j1_f2  # sqrt(G)作为分母,所以G必须是大于0的正数
                self.w[j2, f1] -= self.eta / np.sqrt(self.G[j2, f1]) * g_j2_f1  # math.sqrt()只能接收一个数字作为参数,而numpy.sqrt()可以接收一个array作为参数,表示对array中的每个元素分别开方

    # 根据一堆样本训练模型
    def train(self, sample_generator, max_echo, max_r2):
        '''
        :param sample_generator: 样本生成器,每次yield (node_list, y),node_list中存储的是x的非0值。通常x要事先做好归一化,即模长为1,这样精度会略微高一点
        :param max_echo: 最大迭代次数
        :param max_r2: 拟合系数r2达到阈值时即可终止学习
        :return:
        '''
        for itr in range(max_echo):
            print("echo", itr)
            y_sum = 0.0
            y_square_sum = 0.0
            err_square_sum = 0.0  # 误差平方和
            population = 0  # 样本总数
            for node_list, y in sample_generator:
                self.sgd(node_list, y)
                y = 0.0 if y == -1 else y  # 真实的y取值为{-1,1},而预测的y位于(0,1),计算拟合效果时需要进行统一
                y_hat = self.predict(node_list)
                y_sum += y
                y_square_sum += y ** 2
                err_square_sum += (y - y_hat) ** 2
                population += 1
            var_y = y_square_sum - y_sum * y_sum / population  # y的方差
            r2 = 1 - err_square_sum / var_y
            print("r2=",r2)
            if r2 > max_r2:  # r2值越大说明拟合得越好
                print('r2 have reach', r2)
                break

    # 序列化模型,保存到文件
    def save_model(self, outfile):
        np.save(outfile, self.w)

    # 从文件中加载模型
    def load_model(self, infile):
        self.w = np.load(infile)


FM、FFM应用

库的安装教程https://blog.csdn.net/luanpeng825485697/article/details/77816740

pyfm库下载地址,在网址中搜索pyfm:https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyfm

fastfm下载地址:https://github.com/ibayer/fastFM

ffm库的下载地址:https://github.com/alexeygrigorev/libffm-python

参考:https://blog.csdn.net/jediael_lu/article/details/77772565
https://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html

https://www.cnblogs.com/zhangchaoyang/articles/8410719.html

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值