本教程适合于numpy基础入门,更多详尽内容请阅读官网http://www.numpy.org/,此篇为numpy基础学习教程系列之统计方法篇,倾向于实践用法,后续还会推出一系列numpy其它方面的教程,欢迎广大圈友一起交流学习,并指出其中的错误。
注意:以下np为import numpy as np中的np标识符
加权平均
np.average(c,weights=None)
weights: 为权重参数,如果省略此参数,表示权重相等,等价于求算术平均
算术平均
np.mean(array):求数组array的算术平均值,如果array是ndarray对象,也可以用array.mean()方法求平均值。
求最大值
np.max(a, axis=None, out=None,keepdims=False):求序列的最值
参数:axis默认为列方向(即axis=0),axis=1时为行方向
>>>np.max(np.arange(100))
99
np.maximum(X, Y, out=None):X与Y逐位比较取其大者
参数:最少接收两个参数,接收的两个参数可以大小一致,如果第二个参数为一个单独的数值时,利用到了broadcast。
a = np.array([1,23,65,7,98])
b = np.array([2,43,21,5,76])
c = np.maximum(a,b)
d = np.maximum(a,30)
结果:[ 2 43 65 7 98]
[30 30 65 30 98]
求最小值
np.min(()
>>>np.min(np.arange(100))
0
np.maximum函数的功能与np.maximum类似
求取值范围
np.ptp(array):计算数组的取值范围,返回值等于np.max(array)-np.min(array)
求中位数
np.median(array):获取数组array的中位数
求数组的方差与标准差
np.var(array):求数组array的方差
注意:总体方差是用数据个数去除离差平方和,而样本方差则是用样本数据
个数减1 去除离差平方和,其中样本数据个数减1 (即n-1 )称为自由度。之所以有这样的差别,是为了保证样本方差是一个无偏估计量。
np.std(array):计算数组array的标准差