Numpy基础教程—统计方法

本教程为NumPy基础学习系列之统计方法篇,侧重实践应用,包括加权平均、算术平均、最大值、最小值、中位数、方差与标准差等内容。

本教程适合于numpy基础入门,更多详尽内容请阅读官网http://www.numpy.org/,此篇为numpy基础学习教程系列之统计方法篇,倾向于实践用法,后续还会推出一系列numpy其它方面的教程,欢迎广大圈友一起交流学习,并指出其中的错误。

 

注意:以下np为import numpy as np中的np标识符

 

 

加权平均

 

np.average(c,weights=None)

    weights: 为权重参数,如果省略此参数,表示权重相等,等价于求算术平均

 

 

 

算术平均

np.mean(array):求数组array的算术平均值,如果array是ndarray对象,也可以用array.mean()方法求平均值。

 

求最大值

 

np.max(a, axis=None, out=None,keepdims=False):求序列的最值

    参数:axis默认为列方向(即axis=0),axis=1时为行方向

>>>np.max(np.arange(100))

99

np.maximum(X, Y, out=None):X与Y逐位比较取其大者

    参数:最少接收两个参数,接收的两个参数可以大小一致,如果第二个参数为一个单独的数值时,利用到了broadcast。

a = np.array([1,23,65,7,98])
b = np.array([2,43,21,5,76])
c = np.maximum(a,b)

d = np.maximum(a,30)

结果:[ 2 43 65  7 98]

 

[30 30 65 30 98]

 

 

求最小值

 

np.min(()

>>>np.min(np.arange(100))

0

np.maximum函数的功能与np.maximum类似

 

求取值范围

np.ptp(array):计算数组的取值范围,返回值等于np.max(array)-np.min(array)

 

求中位数

np.median(array):获取数组array的中位数

 

求数组的方差与标准差

 

np.var(array):求数组array的方差

注意:总体方差是用数据个数去除离差平方和,而样本方差则是用样本数据
个数减1 去除离差平方和,其中样本数据个数减1 (即n-1 )称为自由度。之所以有这样的差别,是为了保证样本方差是一个无偏估计量。

 

np.std(array):计算数组array的标准差

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值