Machine Learning
luckxu
Any problem in computer science can be solved by another layer of indirection.
展开
-
bootstrps bagging boosting基本概念
注:本文为非本人原创,原文转载自:http://blog.sina.com.cn/s/blog_5dd2e9270100c8ko.html bootstrps bagging boosting这几个概念经常用到,现仔细学习了一下: 他们都属于集成学习方法,(如:Bagging,Boosting,Stacking),将训练的学习器集成在一起,原理来源于PAC学习模型(Probably转载 2013-02-28 20:50:57 · 446 阅读 · 0 评论 -
Learning中的代数结构的建立 by MIT 林达华
Learning中的代数结构的建立 Learning是一个融会多种数学于一体的领域。说起与此有关的数学学科,我们可能会迅速联想到线性代数以及建立在向量空间基础上的统计模型——事实上,主流的论文中确实在很大程度上基于它们。 R^n (n-维实向量空间) 是我们在paper中见到最多的空间,它确实非常重要和实用,但是,仅仅依靠它来描述我们的世界并不足够。事实上,数学家们给我们提供了丰富得多转载 2013-04-03 18:57:21 · 599 阅读 · 0 评论 -
KL距离,Kullback-Leibler Divergence
KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy)。它衡量的是相同事件空间里的两个概率分布的差异情况。其物理意义是:在相同事件空间里,概率分布P(x)的事件空间,若用概率分布Q(x)编码时,平均每个基本事件(符号)编码长度增加了多少比特。我们用D(P||Q)表示KL距离,计算公式如下:转载 2013-04-23 21:24:38 · 510 阅读 · 0 评论 -
协方差矩阵之主成分分析
PCA的缘起 PCA大概是198x年提出来的吧,简单的说,它是一种通用的降维工具。在我们处理高维数据的时候,为了能降低后续计算的复杂度,在“预处理”阶段通常要先对原始数据进行降维,而PCA就是干这个事的。本质上讲,PCA就是将高维的数据通过线性变换投影到低维空间上去,但这个投影可不是随便投投,要遵循一个指导思想,那就是:找出最能够代表原始数据的投影方法。这里怎么理解这个思想呢?“最能代表原始转载 2013-05-03 19:40:01 · 1779 阅读 · 0 评论 -
GMM&K-means&EM
本文就高斯混合模型(GMM,Gaussian Mixture Model)参数如何确立这个问题,详细讲解期望最大化(EM,Expectation Maximization)算法的实施过程。 单高斯分布模型GSM 多维变量X服从高斯分布时,它的概率密度函数PDF为:(公式有误,应该是(2pi)^n) x是维度为d的列向量,u是模型期望,Σ是模型方差。在实际应用中u通常用样本均值来代替,Σ通转载 2013-12-02 11:16:13 · 685 阅读 · 0 评论