机器学习数学基础——协方差n-1问题

本文深入探讨了样本方差和样本协方差计算中除以n-1的原因,解释了这一做法背后的统计学原理,即为了获得无偏估计,避免对样本方差的低估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自:https://www.cnblogs.com/xiaohuahua108/p/6385812.html
本篇文章主要讨论样本方差和样本协方差除以n-1问题,其他暂且不做过多赘述。

方差的维基百科定义:一个随机变量的方差描述的是它的离散程度,也就是该变量到其期望值的距离。

计算公式:
在这里插入图片描述

样本方差:样本方差是依据所给样本对方差做出的一个无偏估计。用样本去推测整体情况。

计算公式:
在这里插入图片描述
其中n为样本数。

等等,为什么样本方差的计算公式不是n而是n-1呢,不应该是求平均值吗,你看,假设一对数据的总体样本为:在这里插入图片描述,然后每个样本不就是在这里插入图片描述,也就是在这里插入图片描述,这样似乎才是符合数学推理的吧?但是为什么那么多统计学家给出的却要除以n-1呢?

原来啊,我们在估算的时候总是用最大似然方法,让去代替,这样就会导致:
在这里插入图片描述
是不是:在这里插入图片描述,那么这样的话,我们是不是总是莫名其妙的对样本方差估计小了?所以我们就要放大,就变成了除以n-1,那为什么不处以n-a,a为任意小于n的实数呢。这个挖个坑,因为我也没太明白,有没有知道的可以告诉我,哈哈。这个可能涉及一点自由度的问题。
在这里插入图片描述

方差是协方差的特殊情况,就是当两个变量x与y相等时候的情况。既然我们已经知道样本方差为什么是除以n-1。那么样本协方差也是一样的道理。

样本协方差的计算公式:在这里插入图片描述

二、CUDAPyTorch版本兼容性 版本匹配问题 当前CUDA版本为12.8,但安装的PyTorch版本为 1.12.1+cu113(对应CUDA 11.3),版本不兼容会导致GPU无法调用。 解决方法: 卸载现有PyTorch:pip uninstall torch 安装CUDA 12.x兼容的版本(如 torch==2.1.0+cu121): Bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 验证安装: Python import torch print(torch.cuda.is_available()) # 应输出True 三、文件路径权限问题 特殊字符检查 文件名 吗.py 包含中文字符,可能引发路径解析错误(尤其是旧版Windows或某些IDE)。 建议:将文件名改为全英文(如 train.py)。 权限路径完整性 检查文件路径 C:\Users\Guo\Desktop\xm\PyTorch-Classification-Trainer1 是否存在空格或特殊符号。 确保PyCharm对该路径有读写权限(右键文件夹属性 > 安全 > 编辑权限)。 四、依赖库Conda版本问题 Conda版本更新 若Conda版本过旧(如4.6),可能导致虚拟环境管理异常3。 更新Conda: Bash conda update -n base -c defaults conda 依赖库完整性 在Conda环境中运行 conda list,检查是否缺少关键库(如numpytorchvision)。 若依赖不完整,重新安装: Bash conda install numpy pandas matplotlib 五、日志分析调试 查看PyCharm控制台输出 若报错提示 No module named 'xxx',需补充安装对应包。 若提示CUDA初始化失败,需检查驱动PyTorch版本匹配性。 驱动验证 在CMD中运行 nvidia-smi,确认Tesla P4驱动已正确加载且CUDA版本为12.8。 若驱动未生效,重新安装NVIDIA驱动(需CUDA版本匹配)。 总结步骤 修正PyCharm解释器路径。 安装CUDA 12.x兼容的PyTorch版本。 重命名文件为全英文。 更新Conda并检查依赖库。 根据控制台日志进一步排查具体错误。 告诉我卸载那几个依赖pip,我全部安装最新版 我的cuda版本是12.8
03-08
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值