逻辑回归直白介绍

更多深度学习资讯都在公众号:深度学习视觉

title: 逻辑回归介绍
mathjax: true
categories: ML

原文链接:https://fainke.com
线性回归模型公式: g ( x ) = ω 0 + ω 1 x 1 g(x)=\omega_{0}+\omega_{1} x_{1} g(x)=ω0+ω1x1

逻辑回归模型公式: f ( x ) = 1 1 + e − g ( x ) f(x)=\frac{1}{1+e^{-g(x)}} f(x)=1+eg(x)1(包含了线性回归)

x x x条件下 y = 1 y=1 y=1发生的概率为: P ( y = 1 ∣ x ) = π ( x ) = 1 1 + e − g ( x ) P(y=1 | x)=\pi(x)=\frac{1}{1+e^{-g(x)}} P(y=1x)=π(x)=1+eg(x)1

x x x条件下 y = 1 y = 1 y=1不发生的概率为: P ( y = 0 ∣ x ) = 1 − P ( y = 1 ∣ x ) = 1 − 1 1 + e − g ( x ) = e − g ( x ) 1 + e − g ( x ) = 1 1 + e g ( x ) P(y=0 | x)=1-P(y=1 | x)=1-\frac{1}{1+e^{-g(x)}}=\frac{e^{-g(x)}}{1+e^{-g(x)}}=\frac{1}{1+e^{g(x)}} P(y=0x)=1P(y=1x)=11+eg(x)1=1+eg(x)eg(x)=1+eg(x)1

事件发生与不发生的概率比(事件发生比odds)为: P ( y = 1 ∣ x ) P ( y = 0 ∣ x ) = p 1 − p = e g ( x ) \frac{P(y=1 | x)}{P(y=0 | x)}=\frac{p}{1-p}=e^{g(x)} P(y=0x)P(y=1x)=1pp=eg(x)

接下来将会对这个odds进行操作。

设非线性函数 g ( x ) = w 0 + w 1 x 1 + … + w n x n g(x)=w_{0}+w_{1} x_{1}+\ldots+w_{n} x_{n} g(x)=w0+w1x1++wnxn

对odds取对数得到: ln ⁡ ( p 1 − p ) = g ( x ) = w 0 + w 1 x 1 + … + w n x n \ln \left(\frac{p}{1-p}\right)=g(x)=w_{0}+w_{1} x_{1}+\ldots+w_{n} x_{n} ln(1pp)=g(x)=w0+w1x1++wnxn

假设有m个相互独立的观测样本,观测值分别为 y 1 , y 2 , … , y m y_{1}, y_{2}, \dots, y_{m} y1,y2,,ym,设 p i = P ( y i = 1 ∣ x i ) p_{i}=P\left(y_{i}=1 | x_{i}\right) pi=P(yi=1xi)为给定条件下得到 y i = 1 y_{i}=1 yi=1的概率,则 y i = 0 y_{i}=0 yi=0的概率为 P ( y i = 0 ∣ x i ) = 1 − p i P\left(y_{i}=0 | x_{i}\right)=1-p_{i} P(yi=0xi)=1pi,所以得到一个观测值的概率为: P ( y i ) = p i y i ( 1 − p i ) y i − 1 = p i y i ( 1 − p i ) 1 − y i P\left(y_{i}\right)=\frac{p_{i}^{y_{i}}}{\left(1-p_{i}\right)^{y_{i}-1}}=p_{i}^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}} P(yi)=(1pi)yi1piyi=piyi(1pi)1yi。因为各个观测样本相互独子,那么它们的联合分布为各边缘分布的乘积。

得到似然函数为: L ( w ) = ∏ i = 1 m ( π ( x i ) ) y i ( 1 − π ( x i ) ) 1 − y i L(w)=\prod_{i=1}^{m}\left(\pi\left(x_{i}\right)\right)^{y_{i}}\left(1-\pi\left(x_{i}\right)\right)^{1-y_{i}} L(w)=i=1m(π(xi))yi(1π(xi))1yi

这里似然函数的作用就是,求在所有事件发生的odds概率乘积为最大值下的参数值 w ( w 0 , w 1 , … , w n ) w\left(w_{0}, w_{1}, \dots, w_{n}\right) w(w0,w1,,wn),n+1个参数。

对函数 L ( w ) L(w) L(w)取对数得到: ln ⁡ L ( w ) = ∑ i = 1 m ( y i ln ⁡ [ π ( x i ) ] + ( 1 − y i ) ln ⁡ [ 1 − π ( x i ) ] ) \ln L(w)=\sum_{i=1}^{m}\left(y_{i} \ln \left[\pi\left(x_{i}\right)\right]+\left(1-y_{i}\right) \ln \left[1-\pi\left(x_{i}\right)\right]\right) lnL(w)=i=1m(yiln[π(xi)]+(1yi)ln[1π(xi)])

接下来分别对这些 w w w参数求导,得到n+1个方程。接下来以对参数 w k w_k wk求导为例: ( y i ln ⁡ [ π ( x i ) ] + ( 1 − y i ) ln ⁡ [ 1 − π ( x i ) ] ) ′ \left(y_{i} \ln \left[\pi\left(x_{i}\right)\right]+\left(1-y_{i}\right) \ln \left[1-\pi\left(x_{i}\right)\right]\right)^{\prime} (yiln[π(xi)]+(1yi)ln[1π(xi)])
= y i π ( x i ) ⋅ [ π ( x i ) ] ′ + ( 1 − y i ) ⋅ − [ π ( x i ) ] ′ 1 − π ( x i ) ) ′ =\frac{y_{i}}{\pi\left(x_{i}\right)} \cdot\left[\pi\left(x_{i}\right)\right]^{\prime}+\left(1-y_{i}\right) \cdot \frac{-\left[\pi\left(x_{i}\right)\right]^{\prime}}{1-\pi\left(x_{i}\right)} )^{\prime} =π(xi)yi[π(xi)]+(1yi)1π(xi)[π(xi)])
= [ y i π ( x i ) − 1 − y i 1 − π ( x i ) ] ⋅ [ π ( x i ) ] ′ =\left[\frac{y_{i}}{\pi\left(x_{i}\right)}-\frac{1-y_{i}}{1-\pi\left(x_{i}\right)}\right] \cdot\left[\pi\left(x_{i}\right)\right]^{\prime} =[π(xi)yi1π(xi)1yi][π(xi)]
= ( y i − π ( x i ) ) g ′ ( x ) =\left(y_{i}-\pi\left(x_{i}\right)\right) g^{\prime}(x) =(yiπ(xi))g(x)
= x i k [ y i − π ( x i ) ] =x_{i k}\left[y_{i}-\pi\left(x_{i}\right)\right] =xik[yiπ(xi)]

得出: ∂ ln ⁡ L ( w k ) ∂ w k = ∑ i = 1 m x i k [ y i − π ( x i ) ] = 0 \frac{\partial \ln L\left(w_{k}\right)}{\partial w_{k}}=\sum_{i=1}^{m} x_{i k}\left[y_{i}-\pi\left(x_{i}\right)\right]=0 wklnL(wk)=i=1mxik[yiπ(xi)]=0,当梯度为0时可使得函数值最大,至此求得最优 w k w_k wk

欢迎加入微信公众号:深度学习视觉
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值