数据结构实验图论一:基于邻接矩阵的广度优先搜索遍历
题目描述
给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)
输入
输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
输出
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。
示例输入
1 6 7 0 0 3 0 4 1 4 1 5 2 3 2 4 3 5
示例输出
0 3 4 2 5 1
#include <iostream> #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h> #include<malloc.h> #include<stack> using namespace std; int map[110][110]; int vis[110]; int que[110]; int p[110]; int s,e; int n,m,k,t,len; int bfs() { s=0;e=0; que[e++]=t; while(s<e) { int a=que[s++]; for(int i=0; i<k; i++) { if(map[a][i]==1) { que[e++]=i; map[a][i]=map[i][a]=0; } if(vis[a]==0) { p[len++]=a; vis[a]=1; } } } } int main() { cin>>n; int u,v; while(n--) { cin>>k>>m>>t; len=0; memset(map,0,sizeof(map)); memset(vis,0,sizeof(vis)); for(int i=0; i<m; i++) { cin>>u>>v; map[u][v]=map[v][u]=1; } bfs(); for(int i=0; i<len-1; i++) cout<<p[i]<<" "; cout<<p[len-1]<<endl; } }