原码,反码,补码

  1. 快速了解
    [+1] = [00000001]原 = [00000001]反 = [00000001]补
    [-1] = [10000001]原 = [11111110] 反 = [11111111]补

  2. 相关概念
    机器数:机器只认识二进制的数字,即0,1。
    真值:
    数字1 用机器数表示为[0000 0001] ,
    数字1的真值表为+000 0001
    数字-1 用机器数表示为[1000 0001]
    数字-1的真值表为-000 0001
    原码:
    符号位加上真值的的绝对值
    [+1] = [0000 0001]
    [-1] = [1000 0001]
    反码:
    正数的反码是其本身[+1] = [0000 0001]
    负数的反码是除符号位,各个位取反[-1] = [1111 1110]
    补码:
    正数的补码是其本身 [+1] = [0000 0001]
    负数的补码是反码加1 [-1] = [1111 1111]

  3. 为什会有反码和补码
    人可以认识哪个是符号位,知道是加法还是减法,但是机器(即基础电路)设计和实现起来会特别复杂,但是如果机器只算加法没有减法,这样的设计就简单了。所以,人就想,根据运算法则,减去一个正数等于加上一个负数,即1-1 = 1 + (-1) =0。
    但是只用原码,或者反码计算,会与人算的数值有差异,所以,采用补码计算和人计算的值相一致。

eg:1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2

eg: 1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0

eg:1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原

4.实战
示例:
如果“2X”的补码是“90H”,那么X的真值是( )

A.72 B.-56 C.56 D.111

答案解析:
90H是16进制,转换为2进制为[1001 0000]补 = [1000 1111]反 = [1111 0000]原
其中真值为[-111 0000] = -(十六进制70H )= -(十进制 16*7 +0 )= -112
2X = -112 —> X= -56

<think>嗯,用户想学习或练习原码反码补码的概念及转换,需要提供练习题和解释转换方法。首先,我得回顾一下原码反码补码的基本知识,确保自己理解正确。原码是最直观的表示法,符号位加上绝对值的二进制形式。反码原码的符号位不变,其他位取反。补码则是反码加1,用于解决减法运算的问题。 用户可能对转换步骤不太清楚,需要分步骤说明。例如,正原码反码补码都相同,而负则不同。练习题部分,应该设计不同值的例子,覆盖正、负以及零的情况。单选题也是一个好的练习形式,比如引用中的题目,关于±0编码相同的选项,正确答案是补码和移码,用户提供的引用[2]中提到选项C正确,需要确认这一点。 转换方法需要详细步骤,可能用户会混淆补码的转换过程,尤其是负的情况。比如,-5的原码是10000101,反码是11111010,补码是11111011。确保每个步骤都清晰,特别是补码为什么要加1,以及补码如何简化运算。 还要注意用户提到的引用内容,引用[1]说明补码解决了减法问题,引用[2]的练习题涉及到不同编码中±0的表现。需要正确引用这些资料,并在解释中自然地加入引用标识。例如,在解释补码的作用,引用[^1],而在讨论练习题引用[^2]。 另外,用户可能需要实际应用的例子,比如计算机中如何使用补码进行运算,避免符号位的处理问题。练习题应该由易到难,先单个的转换,再涉及运算,比如两个补码相加后的结果判断。 最后,要确保回答结构清晰,分点解释概念、转换步骤、练习题及答案,以及相关问题的扩展,帮助用户全面理解和练习。同,检查LaTeX格式是否正确,所有学表达式用$...$或$$...$$,避免格式错误。</think>### 原码反码补码的概念及转换方法 原码反码补码是计算机中表示有符号整的三种方式,核心目标是简化运算(尤其是减法)。以下是详细解释和练习题: --- #### **1. 基本概念** 1. **原码** - **定义**:符号位(最高位)表示正负,0为正,1为负;其余位为值的绝对值。 - **示例**:$+5$ 的原码为 $00000101$,$-5$ 的原码为 $10000101$。 2. **反码** - **正**:与原码相同。 - **负**:符号位不变,值位按位取反。 - **示例**:$-5$ 的反码为 $11111010$。 3. **补码** - **正**:与原码相同。 - **负**:反码加 $1$。 - **示例**:$-5$ 的补码为 $11111011$。 --- #### **2. 转换方法** 1. **原码反码补码** - **正**:原码 = 反码 = 补码。 - **负**: - 原码符号位不变,值位取反 → 反码。 - 反码加 $1$ → 补码。 - **示例**:$-3$ - 原码:$10000011$ - 反码:$11111100$ - 补码:$11111101$ 2. **补码原码** - **方法**:补码取反后加 $1$(与原码补码过程一致)。 - **示例**:补码 $11111101$ → 取反 $10000010$ → 加 $1$ → 原码 $10000011$(即 $-3$)。 --- #### **3. 练习题与解析** **题目1** 将 $-7$ 转换为8位原码反码补码。 - **原码**:$10000111$ - **反码**:$11111000$ - **补码**:$11111001$ **题目2**(引用题) 单选题:±0编码相同的是( )。 A. 原码补码 B. 反码补码 C. 补码和移码 D. 原码和移码 - **答案**:C - **解析**:补码和移码中,$+0$ 和 $-0$ 的表示均为全0(补码)或特定偏移值(移码)[^2]。 **题目3** 补码 $10101010$ 对应原码是多少? - **步骤**:补码取反 → $01010101$,加 $1$ → $01010110$,符号位为负 → $-86$。 --- #### **4. 核心作用** 补码解决了原码反码中“减法需特殊处理符号位”的问题,使加减法统一为加法运算[^1]。例如: $$5 - 3 = 5 + (-3)_{\text{补码}}$$ 计算机中直接对补码相加即可得到正确结果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值