java:蓝桥Basic_16:分解质因数

本文介绍了一种求解区间[a,b]内所有整数的质因数分解的方法。通过筛选素数并对其进行分解,适用于2≤a≤b≤10000的数据规模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

蓝桥Basic_16

问题描述
  求出区间[a,b]中所有整数的质因数分解。
输入格式
  输入两个整数a,b。
输出格式
  每行输出一个数的分解,形如k=a1a2a3…(a1<=a2<=a3…,k也是从小到大的)(具体可看样例)
样例输入
3 10
样例输出
3=3
4=22
5=5
6=2
3
7=7
8=222
9=33
10=2
5
提示
  先筛出所有素数,然后再分解。
数据规模和约定
  2<=a<=b<=10000

代码

import java.util.Scanner;
public class Basic_16 {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int num1 = scanner.nextInt();
        int num2 = scanner.nextInt();
        boolean flag = false;
        for (int i = num1; i <= num2 ; i++) {
            flag =isPrime(i);
            if(flag){
                //是素数直接输出
                System.out.println(i+"="+i);
            }else {
                //非素数质因数分解
                System.out.print(i+"=");
                int[] nums = new int[100];
                int num = i;
                int k = 0;
                //循环找出质因数
                while (true){
                    int min = minPrime(num);
                    nums[k++] = min;
                    num = num / min ;
                    if(num == 1) break;
                }
                //index是为了打印位置
                int index = findIndex(nums);
                for (int j = 0; j < index-1; j++) {
                    System.out.print(nums[j]);
                    System.out.print("*");
                }
                //打印最后一个因子,防止*多出来
                System.out.print(nums[index-1]);
                System.out.println();
            }
        }
    }
    //判断是否是素数
    private static boolean isPrime(int i) {
        int m = (int)Math.sqrt((double)i);//取平方根
        int j;
        //若能循环完2到m,并且最后一次还能进行j++,说明是素数
        for ( j = 2; j <= m ; j++) if(i%j==0) break;
        if(j>m) return true;
        else return false;
    }
    //查找最小素数
    private static int minPrime(int i){
        int j ;
        for ( j = 2; j <= i ; j++) {
            if(i%j==0) break;
        }
        return j;
    }
    //找出非0的数组索引
    private static int findIndex(int[] nums){
        int index = 0;
        for (int i = 0; i < nums.length; i++) {
            if(nums[i]==0){
                index = i;
                break;
            }
        }
        return index;
    }
}
Unet是一种深度学习模型,最初由Ronneberger等人在2015年提出,主要用于生物医学图像分割。在Matlab中实现Unet网络可以利用其强大的数学计算能力和友好的可视化界面,非常适合科研和教育用途。这个"Unet分割(Matlab)Demo"提供了在Matlab环境中构建、训练和应用Unet模型的示例。 Unet网络的特点在于其对称的架构,由下采样(编码器)和上采样(解码器)两部分组成。编码器部分用于捕捉图像的上下文信息,通过多个卷积层和池化层逐级降低特征图的分辨率,增加表示能力。解码器部分则负责恢复图像的原始空间分辨率,通过上采样和与编码器的跳连接来恢复细节信息。 在`segunet.mlx`文件中,我们可能会看到以下关键步骤的实现: 1. **网络结构定义**:定义Unet的卷积层、池化层、上采样层等。Matlab的Deep Learning Toolbox提供了构建自定义网络的函数,如`conv2d`、`maxpool2d`和`upsample2d`。 2. **损失函数选择**:图像分割通常使用交叉熵损失(cross-entropy loss),有时也会结合Dice系数或Jaccard相似度来评估模型性能。 3. **数据预处理**:`data`文件可能包含训练和验证数据,需要进行归一化、分批次等预处理操作。 4. **模型训练**:设置优化器(如Adam)、学习率策略,并执行训练循环。 5. **模型评估**:在验证集上评估模型的性能,例如计算 Dice 指数或IoU(Intersection over Union)。 6. **可视化结果**:展示模型预测的分割结果,与实际标签对比,帮助理解模型性能。 为了运行这个Demo,你需要确保安装了Matlab的Deep Learning Toolbox以及相关的数据集。`segunet.mlx`是Matlab Live Script,它将代码、注释和输出结合在一起,便于理解和执行。在Matlab环境中打开此脚本,按照指示操作即可。 此外,了解Unet在网络架构设计上的创新,比如跳跃连接(skip connections),有助于理解模型为何能有效地处理图像分割任务。Unet的成功在于它既能捕捉全局信息又能保留局部细节,因此在生物医学图像分析、遥感图像分割、语义分割等领域有广泛应用。 这个"Unet分割(Matlab)Demo"提供了一个直观的起点,帮助初学者和研究人员快速上手Unet网络的实现和训练,为后续的图像分割项目打下基础。通过学习和实践,你可以掌握深度学习在Matlab中的应用,进一步提升在图像处理领域的技能。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值