hive和mysql(传统数据库)的区别

本文深入探讨了Hive和MySQL在数据存储、查询语言、数据格式、数据更新、索引、延迟性和数据规模等方面的显著差异,揭示了Hive作为数据仓库在海量离线数据统计分析中的独特优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、hive是什么

简单来说,hive就是在Hadoop上架了一层SQL接口,可以将SQL翻译成MapReduce去Hadoop上执行,这样使得数据开发和分析人员很方便的使用SQL来完成海量数据统计与分析,二不必使用编程语言开发MapReduce那么麻烦

二、Hive与mysql的区别

1.查询语言不同:hive是hql语言,mysql是sql语言

2.数据存储位置不同:hive是把数据存储到hdfs,而mysql数据存储在自己的系统中

3.数据格式:hive数据格式可以用户自定义,mysql有自己的系统定义格式

4.数据更新:hive不支持数据更新,只可以读,不可以写,sql支持数据的读写

5.索引:hive没有索引,因此查询数据的时候是通过mapreduce很暴力的把数据都查询一遍,也造成了hive查询数据速度很慢的原因,而mysql有索引;

6.延迟性:hive没有索引,因此查询数据的时候通过mapreduce很暴力 的把数据都查询一遍,也造成了hive查询数据速度很慢的原因,而mysql有索引;

7、数据规模:hive存储的数据量超级大,而mysql只是存储一些少量的业务数据

8.底层执行原理:hive底层是用的mapreduce,而mysql是excutor执行器;

 

三、总结一下

  Hive 具有 SQL 数据库的外表,但应用场景完全不同,Hive 只适合用来做海量离线数 据统计分析,也就是数据仓库

Hive是一个建立在Hadoop上的数据仓库工具,它可以用来进行数据摘要、查询分析。它提供了一种类SQL语言——HiveQL,通过这个语言可以将SQL语句转换成MapReduce任务来运行。Hive适用于处理大规模数据集,并且可以很好地与Hadoop生态系统中的其他工具配合使用。与传统的关系型数据库(如MySQL、Oracle等)相比,Hive有一些显著的区别: 1. 数据存储:传统数据库通常使用结构化的数据存储格式(如行列的表格形式),支持事务行级锁等复杂操作,而Hive主要存储在HDFS上,采用列式存储分桶等技术,适合存储大量静态数据。 2. 查询语言:传统数据库使用标准SQL或特定数据库支持的SQL方言进行数据操作,Hive则提供了一个兼容SQL的查询语言HiveQL,但它在执行效率一些SQL功能上可能有限制。 3. 性能优化:传统数据库对查询进行即时优化并执行,Hive则通过转换查询为MapReduce作业来延迟执行,这可能会导致在小数据集上性能不如传统数据库。 4. 数据处理能力:传统数据库适合进行OLTP(在线事务处理),强调快速、实时的事务处理,Hive则更适合OLAP(在线分析处理),擅长处理批量数据查询分析。 5. 可伸缩性:传统数据库一般有固定的存储计算能力,扩展性有限,而Hive可以与Hadoop集群的规模一起扩展,支持数据量的线性增长。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值