跟着Datawhale动手学数据分析 3

使用concat方法合并表格

list_up = [data_left_up,data_right_up]
result_up = pd.concat(list_up,axis=1)
list_down = [data_left_down,data_right_down]
result_down = pd.concat(list_down,axis=1)
result = pd.concat([result_up,result_down])
result.head(10)

需要注意,dataframe中并没有concat方法。
axis的1表示横轴,方向从左到右;0表示纵轴,方向从上到下。当axis=1时,数组的变化是横向的,而体现出来的是列的增加或者减少。

使用DataFrame自带的join方法和append方法

result_up = data_left_up.join(data_right_up)
result_down = data_left_down.join(data_right_down)
result = result_up.append(result_down)
result.head(10)

将数据变为series类型

使用stack方法

data = pd.read_csv('result.csv')
unit_result=data.stack().head(20)

关系型数据库和SQL(Structured Query Language,结构化查询语言)流行的原因之一就是其能够方便地对数据进行连接、过滤、转换和聚 合。但是,像SQL这样的查询语言所能执行的分组运算的种类很有限。
借助Python和pandas强大的表达能力可以执行复杂 得多的分组运算(利用任何可以接受pandas对象或NumPy数组的函数)。

计算泰坦尼克号男性与女性的平均年龄

df = data['Age'].groupby(data['Sex'])
means = df.mean()
means

统计泰坦尼克号中男女的存活人数

survived = data['Survived'].groupby(data['Sex']).sum()
survived

统计泰坦尼克号中不同船舱的存活人数

survived_cabin = data['Survived'].groupby(data['Cabin']).sum()
survived_cabin

统计在不同等级的票中的不同年龄的船票花费的平均值

df = data.groupby(['Pclass','Age'])['Fare'].mean().head()
df

得出不同年龄的总的存活人数,然后找出存活人数的最高的年龄,最后计算存活人数最高的存活率(存活人数/总人数)

survived_age= data['Survived'].groupby(data['Age']).sum()
survived_age[survived_age.values==survived_age.max()]
sum = data['Survived'].sum()
percent = survived_age.max()/sum
print("最大存活率:"+str(percent))
Datawhale数据分析课程是一门专门教授数据分析的课程。在这门课程中,生将习各种数据处理和分析的技巧,包括数据的载入、基本操作、可视化展示等。在第一章的习中,生主要习了如何载入数据以及如何查看数据的基本信息,例如平均值、标准差、最大最小值,还习了数据的相加和删减等基本操作,这些都为后面进行数据分析打下了基础。此外,数据可视化也是数据分析过程中非常重要的一部分。通过绘图展示数据,可以帮助人们更直观地理解数据,从而得出更准确的结论。良好的数据可视化往往需要一些技巧,比如可以使用matplotlib和seaborn等库来进行可视化操作。例如,在任务六中,使用seaborn库的kdeplot函数对泰坦尼克号数据集中不同年龄的人生存与死亡人数分布情况进行了可视化展示。此外,Pandas库中的stack()和unstack()方法也是数据分析中常用的工具,用于数据的重构、聚合与运算。通过使用这些方法,可以对数据进行更灵活的处理和分析。例如,在任务一中,通过习教材《Python for Data Analysis》和进行相关的搜索,可以了解到GroupBy机制在数据分析中的应用。总之,Datawhale数据分析课程提供了丰富的知识和技巧,帮助生掌握数据分析的基本原理和实践技能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Datawhale数据分析课程01](https://blog.csdn.net/m0_71038676/article/details/124809826)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Datawhale数据分析课程第二章](https://blog.csdn.net/miaochangq/article/details/108077004)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值