神经网络入门 超级简单

1、什么是神经网络

神经网络(Neural Network,NN),是一种模仿生物神经网络的结构和功能的数学/计算模型,用于拟合各种函数。

2、神经网络的两个要素

神经元

一个神经元,有输入(上图中神经元接受输入:x1、x2、x3),有输出(输出:y),并在神经元内部进行操作,将输入映射为输出。

 

 

连接

所谓连接,就是神经元组织在一起的形式。

不同的神经元通过连接结合在一起,形成了一个网络,例如下图:

 

神经网络的训练

NN 的神奇之处在于,它只有结构,没有超参数,一旦结构确定,投入数据去训练就好了,并不需要一般机器学习模型必不可少的“调参”步骤。它可以用来拟合任意的函数(输入到输出的映射),具备无限的可能性。而不像统计学习模型那样,有一个预设的模型函数,适用范围明确但狭窄。

NN 的训练过程是一个迭代的过程,最初初始化可以认为是随机获得各个权值,然后每次迭代:

  • 输入样本进入到当前 NN 的每一个神经元,用现有的权值加权,然后再由激活函数输出给后面连接的神经元。这样一层层递进,最终形成 NN 整体网络的输出。

  • 这次运行的输出与目标相比对,计算出 Cost,然后再通过最小化 Cost 来反向调整网络各层、各个神经元的权值。

如此不断重复迭代,直至收敛。

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值