自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 基于python的图像分割【图像分割】基于主动轮廓模型实现图像分割附matlab代码

医学图像分割在疾病诊断和治疗等领域中的作用日益重要.当前,主动轮廓模型已广泛地应用于医学图像分割领域.此模型对图像分割,可视化,配准和解剖组织跟踪等是很有效的.主动轮廓模型将复杂的分割转化为函数的极值问题,即曲线或曲面变形的依据是根据其定义的能量函数最小化原则.

2022-12-14 14:06:08 689 2

原创 点云处理算法整理(超详细教程)十大点云数据处理技术梳理

点云配准的概念类比于二维图像中的配准,只不过二维图像配准获取得到的是x,y,alpha,beta等放射变化参数,二三维点云配准可以模拟三维点云的移动和对齐,也就是会获得一个旋转矩阵和一个平移向量,通常表达为一个4×3的矩阵,其中3×3是旋转矩阵,1*3是平移向量。如果要对一个三维点云进行描述,光有点云的位置是不够的,常常需要计算一些额外的参数,比如法线方向、曲率、文理特征等等。主要包含以下几方面:点云压缩,点云索引(KDtree、Octree),点云LOD(金字塔),海量点云的渲染。

2022-12-14 14:01:36 26889 1

原创 点云三维重建的原理,在医学图像分析中使用ICP算法进行点云配准

SIFT 3D描述符的特点是以检出的特征点为中心选16x16x16的区域作为local patch,这个区域又可以均分为4x4x4个子区域,每个子区域中各个像素的梯度都可以分到8个bin里面,这样就得到了4x4x4x8=512维的特征向量。最后,3D模型点云之间的差异也是可视化的。在医学图像配准和重建领域,通过对比三种不同算法的精度和鲁棒性,ICP,ICP+k-d 树,以及文中所提的算法,本问题提出的算法是快速且精度更高的。最近点的搜索算法是迭代的,点和分割平面是相对的,这决定了搜索路径的机制。

2022-12-14 13:52:10 1384

原创 什么是深度学习?怎么学好深度学习?

预测是个非常笼统的术语。例如,机器学习中的预测可以包括预测某位消费者将会在一家给定的公司花费是多少,或者预测一笔特殊的信用卡消费中是否存在欺诈。预测也包括更一般的模式识别,如给定的图片显示了什么字母,或者这张照片中是否有马、狗、人、脸、建筑等。

2022-12-13 17:09:58 1587

原创 神经网络算法有哪几种?神经网络算法预测模型

补充概念:1.这种利用最小化误差的平方和来解决回归问题的方法叫最小二乘法(Least Square Method)。1.由浅入深的介绍2.神经网络(入门最详细)3.神经网络层数及神经元数目的选择4.关于BP神经网络中输入层、隐藏层、输出层节点数的讨论。

2022-12-11 17:14:49 590

原创 计算机视觉的应用,计算机视觉新手指南

攻读硕士学位的这段时间,我通过学习不同的课程探索了不同的研究领域,并最终决定将计算机视觉作为我的主要研究方向。比如,你打算为自己的房屋购买家具,你针对家庭的布局环境去商店后选择了一家家具店,但在家具交付后,常常会出现家具太大或太小的问题,现在没有什么技术可以解决该问题。例如,计算机视觉在印度是一个广阔的领域,在印度有广阔的发展空间,在这个领域,你所需要的只是一架已经开始渗透到更小的城市的相机。在过去的几年中,准确性得到了很大的提高,但是当机器被要求处理带有混合物体的图像时,机器仍然会犯错误。

2022-12-11 14:49:59 397

原创 YOLO系列算法--集成多种YOLO改进点,面向小白科研的YOLO检测代码库YOLOAir

NMS、Merge-NMS、DIoU-NMS、Soft-NMS、CIoU-NMS、DIoU-NMS、GIoU-NMS、EIoU-NMS、SIoU-NMS、Soft-SIoUNMS、Soft-CIoUNMS、Soft-DIoUNMS、Soft-EIoUNMS、Soft-GIoUNMS 等持续更新中。以上组件模块使用统一模型代码框架、统一任务形式、统一应用方式,模块组件化可以帮助用户自定义快速组合 Backbone、Neck、Head,使得网络模型多样化,助力科研改进检测算法,构建更强大的网络模型。

2022-12-11 14:17:40 775

原创 深度学习基础。入门到实战,深度学习到底有多深?

输入是什么?输出是什么?选择多少层网络?每一层有多少个神经元?层与层之间要怎么连接的?如何选择输入、输出?以手写数字辨识为例说明:假设我们要辨识一张像素是16*16=256的手写数字图片,那每一个像素点就是一个特征变量X,因此输入就是:X1、X2、X3、X4、…、X256。输出就是0-9十个数字的概率,然后根据概率最大是那个数字预测结果。上图,分别输出了是数字0-9的概率,而是2的概率最大是0.9,因此机器觉得,这个数字就是2。如何选择网络架构?

2022-12-08 14:38:00 223

原创 卷积神经网络入门,卷积神经网络有哪些?新手入门卷积必看,真保姆级教程!

由于深度神经网络通常都是多层卷积的堆叠,通过上一层得到了直线或者曲线后,下一层不再组合像素,而是将线组合成形状,一层一层进行下去,直到形成完整的图片。关卷积神经网络CNN方面的使用,前景,就业还有很多很多,此处就不多做介绍了,为了方便大家,我也整理了很多计算机视觉,机器学习,深度学习方面的学习资料,包含:论文,视频,文章,行业报告,书籍,项目代码等。然而,当使用稍微小一点的学习率时,训练过程会更慢,但不会发散。但是,包括卷积神经网络在内,深度学习训练的一大难题就是,如何选择正确的学习率。

2022-12-08 14:23:18 882

原创 卷积神经网络应该怎么学?数据分析|机器学习 一文看懂卷积神经网络

🌟卷积神经网络的发明给人类进入了新的世界,本文用通俗易懂的方式讲解了卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,[1]对于大型图像处理有出色表现。卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络在图像和语音识别方面能

2022-12-08 14:08:43 249

原创 pytorch环境搭建,pytorch超详细最新安装教程(一步到位)

"CPU版本安装:pip install torch==1.3.0+cpu torchvision==0.4.1+cpu -f https://download.pytorch.org/whl/torch_stable.html\n","GPU版本安装:pip install torch===1.3.0 torchvision===0.4.1 -f https://download.pytorch.org/whl/torch_stable (默认是CUDA10版本)""初始化一个全零的矩阵"

2022-11-04 16:00:38 2159

原创 到底什么是计算机视觉,又该如何高效使用?

经过几亿年的演化,目前人类的视觉系统已经具备非常高的复杂度和强大的功能,人脑中神经元数目达到了1000亿个,这些神经元通过网络互相连接,这样庞大的视觉神经网络使得我们可以很轻松的观察周围的世界。目标检测的主要目的是让计算机可以自动识别图片或者视频帧中所有目标的类别,并在该目标周围绘制边界框,标示出每个目标的位置,有关计算机视觉方面的使用,前景,就业还有很多很多,此处就不多做介绍了,为了方便大家,我也整理了很多计算机视觉,机器学习,深度学习方面的学习资料,包含:论文,视频,文章,行业报告,书籍,项目代码等。

2022-11-02 16:42:19 610

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除