本篇文章主要介绍如何通过中文维基百科语料库来训练一个word2vec模型。
相关资料下载:
中文维基百科下载地址:
https://dumps.wikimedia.org/zhwiki/20190720/ (我用的是这个,用UC浏览器下载)
https://dumps.wikimedia.org/zhwiki/ (在这里下载最新的)
WikiExtractor项目git地址:https://github.com/attardi/wikiextractor
OpenCC项目git地址:https://github.com/BYVoid/OpenCC
中文分词jieba项目git地址:https://github.com/fxsjy/jieba
gensim官网地址:https://radimrehurek.com/gensim/install.html
一、语料库的下载
我下载是zhwiki-20190720-pages-articles-multistream.xml.bz2文件,1.5G左右是一个压缩包,下载的时候需要注意文件的名称。
https://dumps.wikimedia.org/zhwiki/20190720/ (我用的是这个,windows用UC浏览器下载)
linux下载命令:
wget https://dumps.wikimedia.org/zhwiki/20190720/zhwiki-20190720-pages-articles-multistream.xml.bz2
二、语料库文章的提取
下载完成之后,解压缩得到的是一个xml文件,里面包含了许多的文章,也有许多的日志信息。所以,我们只需要提取xml文件里面的文章就可以了。我们通过WikiExtractor来提取xml文件中的文章,它是一个意大利人写的一个Python脚本专门用来提取维基百科语料库中的文章,将每个文件分割的大小为500M(或者2000M)(修改下面的命令),它是一个通过cmd命令来设置一些参数提取文章,提取步骤如下:
a、WikiExtractor的安装
将整个WikiExtractor项目clone或者下载到本地,拷贝里面的WikiExtractor.py出来,放到跟上面的xxx.bz2同一个文件夹即可(2019-07-30 github里面没有setup.py,有的教程说要用,直接拿来用就行啦)
b、维基百科语料库文章的提取
windows下cmd进入路径,包含下面2个的路径:
WikiExtractor.py和zhwiki zhwiki-20190720-pages-articles-multistream.xml.bz2
python WikiExtractor.py -b 2000M -o zhwiki zhwiki-20190720-pages-articles-multistream.xml.bz2
python WikiExtractor.py -b 500M -o zhwiki zhwiki-20190720-pages-articles-multistream.xml.bz2
# 分割的大小为500M(或者2000M)——词向量长度一般是100-300M哦
# 解压抽取词汇
python bzcat zhwiki-20190720-pages-articles-multistream.xml.bz2 | python WikiExtractor.py -b 500M -o extracted >output.txt ——我执行后报can't open file 'bzcat': [Errno 2] No such file or directory,先不处理 了
参数介绍:
-b,设置提取文章后的每个文件大小
-o,制定输出文件的保存目录
zhwiki-20180720-pages-articles.xml,下载的维基百科语料库文件
更多参数的使用,可以通过以下命令查看:
python WikiExtractor.py -h
使用WikiExtractor提取文章,会在指定目录下产生一个AA的文件夹,里面会包含很多的文件。使用WikiExtractor提取的文章格式如下:
其中省略号表示的就是文章的内容,所以后面我们还需要通过正则化表达式来去除不相关的内容。
c、中文简体和繁体的转换——高老师说不用这个,因为太繁琐了,使用pip install hanziconv
因为维基百科语料库中的文章内容里面的简体和繁体是混乱的,所以我们需要将所有的繁体字转换成为简体。这里我们利用OpenCC来进行转换。
OpenCC的使用教程请参考:https://blog.csdn.net/sinat_29957455/article/details/81290356
opencc -i 需要转换的文件路径 -o 转换后的文件路径 -c 配置文件路径
我碰到的问题:
1、用WikiExtractor.py提取后的路径:C:\Users\中文\Desktop\AI-NLP\learn-NLP-luhuibo\lesson-04\zhwiki500\AA\wiki_00
2、在这个路径执行:
C:\Users\中文\Desktop\AI-NLP\learn-NLP-luhuibo\lesson-04\zhwiki500\AA>opencc -i wiki_00 -o zh_wiki_00 -c C:\Users\中文\Desktop\AI-NLP\learn-NLP-luhuibo\lesson-04\opencc-1.0.4\share\opencc\t2s.json
——报错:t2s.json not found or not accessible.
在路径执行:C:\Users\壹心理\Desktop\AI-NLP\learn-NLP-luhuibo\lesson-04>opencc -i wiki_00 -o zh_wiki_00 -c opencc-1.0.4\share\opencc\t2s.json
——上面这个命令是OK的
# 解决方法(t2s.json not found or not accessible.):
下载完成之后,解压到本地即可。解压之后可以将OpenCC下的bin目录添加到系统环境变量中。
——不要放到中文路径,直接放到C盘下,C:\opencc-1.0.4\share\opencc\t2s.json
正常的命令是:opencc -i wiki_00 -o zh_wiki_00 -c C:\opencc-1.0.4\share\opencc\t2s.json
d、正则表达式提取文章内容并进行分词
使用WikiExtractor提取的文章,会包含许多的,所以我们需要将这些不相关的内容通过正则表达式来去除。然后再通过jieba对文章进行分词,在分词的时候还需要将一些没有实际意义的词进行去除,所以在分词的之后加了一个停用词的去除。将分割之后的文章保存到文件中,每一行表示一篇文章,每个词之间使用空格进行分隔。
e、将分词后的文件合并为一个
将分词后的多个文件合并为一个文件,便于word2vec模型的训练
d和e代码在这里:
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''=================================================
@IDE :PyCharm
@Author :LuckyHuibo
@Date :2019/8/5 11:12
@Desc :使用中文维基百科语料库训练一个word2vec模型
根据这个教程改编的
https://blog.csdn.net/sinat_29957455/article/details/81432846
1、我已经用WikiExtractor.py提取完数据,并用opencc转为简体字,放在我本地的./data/目录下
2、代码中的文件路径,记得自己修改,文件太大我设置gitignore了
3、stopwords.txt停用词表,我放在同一目录下
==================================================
import logging, jieba, os, re
def get_stopwords():
'''
加载停用词表,去掉一些噪声
:return:
'''
logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s', level=logging.INFO)
# 加载停用词表
stopword_set = set()
with open("stopwords.txt", 'r', encoding="utf-8") as stopwords: # stopwords.txt停用词表,我放在同一目录下
for stopword in stopwords:
stopword_set.add(stopword.strip("\n"))
return stopword_set
def parse_zhwiki(read_file_path, save_file_path):
'''
使用正则表达式解析文本
'''
# 过滤掉<doc>
regex_str = "[^<doc.*>$]|[^</doc>$]"
file = open(read_file_path, "r", encoding="utf-8")
# 写文件
output = open(save_file_path, "w+", encoding="utf-8")
content_line = file.readline()
# 获取停用词表
stopwords = get_stopwords()
# 定义一个字符串变量,表示一篇文章的分词结果
article_contents = ""
while content_line:
match_obj = re.match(regex_str, content_line)
content_line = content_line.strip("\n")
if len(content_line) > 0:
if match_obj:
# 使用jieba进行分词
words = jieba.cut(content_line, cut_all=False)
for word in words:
if word not in stopwords:
article_contents += word + " "
else:
if len(article_contents) > 0:
output.write(article_contents + "\n")
article_contents = ""
content_line = file.readline()
output.close()
def generate_corpus():
'''
将维基百科语料库进行分类
'''
zhwiki_path = "./data/" # 加载zhwiki的路径
save_path = "./data/" # 保存zhwiki的路径
for i in range(3):
file_path = os.path.join(zhwiki_path, str("zh_wiki_0%s" % str(i)))
parse_zhwiki(file_path, os.path.join(save_path, "wiki_corpus0%s" % str(i)))
def merge_corpus():
'''
合并分词后的文件
'''
output = open("./data/wiki_corpus", "w", encoding="utf-8")
input = "./data/"
for i in range(3):
file_path = os.path.join(input, str("wiki_corpus0%s" % str(i)))
file = open(file_path, "r", encoding="utf-8")
line = file.readline()
while line:
output.writelines(line)
line = file.readline()
file.close()
output.close()
if __name__ == "__main__":
generate_corpus()
merge_corpus()
三、word2vec模型的训练
训练word2vec模型的时候,需要使用到gensim库,安装教程请参考官网,通过pip命令就可以进行安装。训练过程需要30分钟到1个小时,具体训练时间与电脑的配置相关。
import logging
from gensim.models import word2vec
def main():
logging.basicConfig(format="%(asctime)s:%(levelname)s:%(message)s",level=logging.INFO)
sentences = word2vec.LineSentence("./data/wiki_corpus") #注意替换成你的路径
model = word2vec.Word2Vec(sentences,size=250) # size默认是100-300,根据你的语料大小进行增加,效果看你的需求
#保存模型
model.save("model/wiki_corpus.model") # 我的代码是保存为zhwiki_news.word2vec,需要你自己改下
if __name__ == '__main__':
main()
四、word2vec模型的使用
训练完成之后,我们可以利用训练好的模型来做一些词的预测,主要包括三个方面的应用。
1、找出与指定词相似的词
返回的结果是一个列表,列表中包含了制定个数的元组,每个元组的键是词,值这个词语指定词的相似度。
2、计算两个词的相似度
3、根据前三个词来类比
代码如下:
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''=================================================
@IDE :PyCharm
@Author :LuckyHuibo
@Date :2019/8/5 14:12
@Desc :对wiki_extractor_case进行测试
1、加载训练好的语料corpus
model = models.Word2Vec.load("./data/zhwiki_news.word2vec")
#这个zhwiki_news.word2vec是我训练好的,你可以直接Load你训练好的model
2、wordcloud画图时出现乱码
——绘制词云,需要添加.ttf字体,否则会显示乱码的
.ttf文件在windows里面直接搜索即可,复制到同级目录即可,我用windows搜到的ping.ttf(太大了,未上传)
=================================================='''
# 找出与指定词相似的词
# 返回的结果是一个列表,列表中包含了制定个数的元组,每个元组的键是词,值这个词语指定词的相似度。
import logging
from gensim import models
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud
def get_mask():
'''
获取一个圆形的mask
'''
x, y = np.ogrid[:300, :300]
mask = (x - 150) ** 2 + (y - 150) ** 2 > 130 ** 2
mask = 255 * mask.astype(int)
return mask
def draw_word_cloud(word_cloud):
'''
绘制词云,需要添加.ttf字体,否则会显示乱码的
.ttf文件在windows里面直接搜索即可
'''
font = r'./data/ping.ttf' # 这个太大,需要自己找下
wc = WordCloud(background_color="white", font_path=font, mask=get_mask())
wc.generate_from_frequencies(word_cloud)
# 隐藏x轴和y轴
plt.axis("off")
plt.imshow(wc, interpolation="bilinear")
plt.show()
def test_draw():
'''
测试绘制的词云
:return:
'''
logging.basicConfig(format="%(asctime)s:%(levelname)s:%(message)s", level=logging.INFO)
model = models.Word2Vec.load("./data/zhwiki_news.word2vec") # 这个zhwiki_news.word2vec是我训练好的,你可以直接Load你训练好的model
# 输入一个词找出相似的前10个词
one_corpus = ["心理"]
result = model.wv.most_similar(one_corpus[0], topn=100)
# 将返回的结果转换为字典,便于绘制词云
word_cloud = dict()
for sim in result:
# print(sim[0],":",sim[1])
word_cloud[sim[0]] = sim[1]
# 绘制词云
draw_word_cloud(word_cloud)
# #输入两个词计算相似度
two_corpus = ["腾讯", "阿里巴巴"]
res = model.wv.most_similar(two_corpus[0], two_corpus[1])
print("similarity:", res)
# 输入三个词类比
three_corpus = ["北京", "上海", "广州"]
res = model.wv.most_similar([three_corpus[0], three_corpus[1], three_corpus[2]], topn=100)
# 将返回的结果转换为字典,便于绘制词云
word_cloud = dict()
for sim in res:
# print(sim[0],":",sim[1])
word_cloud[sim[0]] = sim[1]
# 绘制词云
draw_word_cloud(word_cloud)
if __name__ == "__main__":
test_draw()
【代码】https://github.com/Valuebai/learn-NLP-luhuibo/tree/master/lesson-04
主要是:wiki_extractor_case.py和wiki_extractor_test.py
【参考】
1、使用中文维基百科语料库训练一个word2vec模型:https://blog.csdn.net/sinat_29957455/article/details/81432846
——主要根据这个写的,更加具体清楚