动态规划_最长公共子序列问题

/**
 * 动态规划_最长公共子序列问题
 * @author Matt
 */
public class LCS {

    /**
     * 计算x和y序列的最长公共子序列长度
     * @param x x序列
     * @param y y序列
     * @param b 子问题序号标记数组
     * @return 表示最长公共子序列的长度
     */
    public static int lcsLength(char []x, char []y, int [][]b) {
        int m = x.length - 1; // x序列的长度
        int n = y.length - 1; // y序列的长度
        int [][]c = new int[m+1][n+1]; // 记录最长公共子序列的长度
        // 第0行、第0列除c[0][0]外均置0
        for (int i = 1; i <= m; i++) c[i][0] = 0; 
        for (int i = 1; i <= n; i++) c[0][i] = 0;
        // 子序列计算
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {

                // 如果x序列的最后一个元素和y序列的最后一个元素相等
                //  最长公共子序列(lcs)就是x-1序列和y-1序列的lcs
                //  加上x序列的最后一个元素,即lcs的长度为
                //  x-1序列和y-1序列的lcs的长度加一
                if (x[i] == y[j]) {
                    c[i][j] = c[i-1][j-1] + 1;
                    b[i][j] = 1; // 设置该情况的标号为1

                // 将(x-1序列、y序列)的lcs和(x序列、y-1序列)的
                //  lcs进行比较,若前者大,则x序列、y序列的lcs取前者
                } else if (c[i-1][j] >= c[i][j-1]) {
                    c[i][j] = c[i-1][j];
                    b[i][j] = 2; // 设置该情况的标号为2

                //  若后者大,则lcs取后者
                } else {
                    c[i][j] = c[i][j-1];
                    b[i][j] = 3; // 设置该情况的标号为3
                }
            }
        }
        return c[m][n]; // 返回代表x和y序列的lcs长度数组
    }

    /**
     * 打印lcs
     * @param i x序列的长度
     * @param j y序列的长度
     * @param x x序列
     * @param b 子问题标记数组
     */
    public static void lcs(int i, int j, char []x, int [][]b) {
        if (i == 0 || j == 0) return; // 长度均为0则返回
        if (b[i][j] == 1) { // 情况1
            lcs(i-1, j-1, x, b);
            System.out.print(x[i]);
        } else if (b[i][j] == 2) {  // 情况2
            lcs(i-1, j, x, b);
        } else { // 情况3
            lcs(i, j-1, x, b);
        }
    }

    public static void main(String[] args) {
        // x序列,因为我们是从i=1开始遍历的,所以第一个为空,下同
        char []x = {' ', 'A', 'B', 'C', 'B', 'D', 'A', 'B'};
        // y序列
        char []y = {' ', 'B', 'D', 'C', 'A', 'B', 'A'};
        int [][]b = new int[x.length][y.length];
        lcsLength(x, y, b);
        lcs(x.length-1, y.length-1, x, b);
    }
}
// 运算结果:BCBA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值