数组中的逆序对

在这里插入图片描述
我都天真傻逼超时代码:

class Solution {
public:
    int InversePairs(vector<int> data) {
        int count = 0;
        for(int i = 0; i < data.size(); i++) {
            for(int j = 0; j < i; j++){
                if(data[j] > data[i]) count++;
                if(count == 1000000007) count = 0;
            }
        }
        return count;
    }
};

归并排序思路,时间复杂度O(nlogn),空间复杂度O(n):

class Solution {
public:
    int InversePairs(vector<int> data) {
        int size = data.size();
        if(size <= 1) return 0;
        vector<int> temp(size); //额外需要的数组空间
        int res = 0;
        merge_(data, temp, 0, size-1, res);
        return res;
    }
    //递归分块(二路归并)
    void merge_(vector<int> &array, vector<int> &temp, int l, int r, int &res){
        if(l >= r) return;
        
        int mid = l + ((r - l)>>1);
        merge_(array, temp, l,  mid, res);
        merge_(array, temp, mid+1, r, res);
        
        merge_sort(array, temp, l, mid, r, res);
    }
    //两块有序块合并成一个有序块
    void merge_sort(vector<int> &array, vector<int> &temp, int l, int mid, int r, int &res){
        int i = l, j = mid + 1, k = 0;
        while(i <= mid && j <= r){
            if(array[i] > array[j]) {
                temp[k++] = array[j++];
                res += mid-i+1; //统计逆序对
                res %= 1000000007;
            }
            else {
                temp[k++] = array[i++];
            }
        }
        while(i <= mid) {
            temp[k++] = array[i++];
        }
        while(j <= r) {
            temp[k++] = array[j++];
        }
        for(i = l, k = 0; i <= r; i++, k++) {
            array[i] = temp[k];
        }
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值