基于keras的神经网络线性回归拟合

# -*- coding: utf-8 -*-

import numpy as np
np.random.seed(1337)  # for reproducibility
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt # 可视化模块

# 创建数据
# create some data
X = np.linspace(-1, 1, 200)
np.random.shuffle(X)    # randomize the data
Y = 0.5 * X + 2 + np.random.normal(0, 0.05, (200, ))
# plot data 绘制散点图
plt.scatter(X, Y)

X_train, Y_train = X[:160], Y[:160]     # train 前 160 data points
X_test, Y_test = X[160:], Y[160:]       # test 后 40 data points

# 建立模型
model = Sequential()
model.add(Dense(1, input_dim=1)) # 输入是一维,输出也是一维

# 激活模型
# choose loss function and optimizing method
model.compile(loss='mse', optimizer='sgd')

# 训练模型
for step in range(301):
    cost = model.train_on_batch(X_train, Y_train)
    if step % 100 == 0:
        print('train cost: ', cost)
        
# 检验模型
print('\nTesting ------------')
cost = model.evaluate(X_test, Y_test, batch_size=40)
print('test cost:', cost)
W, b = model.layers[0].get_weights()
print('Weights=', W, '\nbiases=', b)

# 将训练的结果绘制出来
plt.scatter(X, X * W + b, c = 'r', s= 5) # draw the line after training
plt.show()

显示的结果

train cost:  4.173795223236084
train cost:  0.10054540634155273
train cost:  0.010608138516545296
train cost:  0.004354666918516159
Testing ------------
test cost: 0.005134253762662411
Weights= [[0.5617714]] 
biases= [2.0009663]

在这里插入图片描述

以下是Tensorflow的写法

# -*- coding: utf-8 -*-
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
import matplotlib.pyplot as plt
 

#添加网络层
def add_layer(inputs, in_size, out_size, activation_function=None):   #添加一个层
    w = tf.Variable(tf.random_normal([in_size, out_size]))   #从正态分布中生成随机值
    b = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    Wx_plus_b = tf.add(tf.matmul(inputs, w), b, name = "result")
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs
 
#保存
def save(tf,sess):
    constant_graph = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ["result"])
    with tf.gfile.FastGFile("model.pb", mode='wb') as f:
        f.write(constant_graph.SerializeToString())

#定义一个(300,1)的列x_data, 同时生成一个y_data, 然后进行预测, 输入-隐藏-输出 三层,训练1000次, 每50次看loss变化, 并把原始数据和预测的数据可视化
x_data = np.linspace(-1, 1, 200)[:, np.newaxis] 
print('x_data.shape =',x_data.shape)
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = 0.5 * x_data + 2 + noise
print('y_data.shape =',y_data.shape)
 
xs = tf.placeholder(tf.float32, [None,1])
ys = tf.placeholder(tf.float32, [None,1])
 
#构造模型
prediction = add_layer(xs, 1, 1, activation_function=tf.nn.relu)
 
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
 
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)

#开始训练 
for i in range(1000):
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        print('loss = ',sess.run(loss, feed_dict={xs:x_data, ys:y_data}))
    

#保存训练好的模型
save(tf,sess)
    
#画图,把原始数据可视化
fig = plt.figure()
ax = fig.add_subplot(1,1,1)        
prediction_value = sess.run(prediction, feed_dict={xs: x_data})  
ax.plot(x_data, prediction_value,color='red') # 画线
ax.scatter(x_data, y_data) # 画散点
plt.show()

显示控制台结果

x_data.shape = (200, 1)
y_data.shape = (200, 1)
loss =  3.1638856
loss =  0.0031950492
loss =  0.0028336623
loss =  0.0028333224
loss =  0.0028333217
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
loss =  0.0028333226
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值