LC 309. Best Time to Buy and Sell Stock with Cooldown 股票系列之四 状态机 动态规划DP

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

  • You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
  • After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)

Example:

prices = [1, 2, 3, 0, 2]
maxProfit = 3
transactions = [buy, sell, cooldown, buy, sell]

这道题自己没有想出来,后来看了别人的解法,再一次表示惊叹,又学了一种结合状态机的动态规划方法。先说一下我的思路,虽然没有做出来。一开始觉得这题和股票系列的第二题有点像,贪心的在每一次股票上涨的时候都买,对于cooldown的限制用传统的DP思路去做,维护buyDate记录上一个股价下跌的日期,然后判断两种情况的最大值得到当前的DP值,两种情况为:从buyDate开始买、从buyDate的后一天开始买。后来发现这样解决不了例如这样的输入数据:[6,1,3,2,4,7],因为只判断了(1~3)+(4~7)和(1~1)+(2~7),但是收益最大的情况恰好是(1~7)。


上图就是这道题目中涉及到的状态机。有三个状态,五条边,每天都必须走一条边

S0->S1:今天购入股票;

S0->S0: 等待,不购入股票;

S1->S1:购入股票后等待,不售出股票;

S1->S2: 将持有的股票售出;

S2->S0: 经历过售出股票之后,冷却一天进入可以再次购买的状态。

下面用代码表示状态机的变化,有三个数组s1[], s2[], s3[],表示的是在第 i 天到达该状态时的最大的总金额。

s0[i] = max(s0[i - 1], s2[i - 1]); // Stay at s0, or rest from s2
s1[i] = max(s1[i - 1], s0[i - 1] - prices[i]); // Stay at s1, or buy from s0
s2[i] = s1[i - 1] + prices[i]; // Only one way from s1

完整代码:

int maxProfit(vector<int>& prices){
	if (prices.size() <= 1) return 0;
	vector<int> s0(prices.size(), 0);
	vector<int> s1(prices.size(), 0);
	vector<int> s2(prices.size(), 0);
	s1[0] = -prices[0];
	s0[0] = 0;
	s2[0] = INT_MIN;
	for (int i = 1; i < prices.size(); i++) {
		s0[i] = max(s0[i - 1], s2[i - 1]);
		s1[i] = max(s1[i - 1], s0[i - 1] - prices[i]);
		s2[i] = s1[i - 1] + prices[i];
	}
	return max(s0[prices.size() - 1], s2[prices.size() - 1]);
}

另外经过状态的简化可以写成这样:

int maxProfit(vector<int> &prices) {
    int buy(INT_MIN), sell(0), prev_sell(0), prev_buy;
    for (int price : prices) {
        prev_buy = buy;
        buy = max(prev_sell - price, buy);
        prev_sell = sell;
        sell = max(prev_buy + price, sell);
    }
    return sell;
}

阅读更多
换一批

没有更多推荐了,返回首页