# LC 309. Best Time to Buy and Sell Stock with Cooldown 股票系列之四 状态机 动态规划DP

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

• You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
• After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)

Example:

prices = [1, 2, 3, 0, 2]
maxProfit = 3
transactions = [buy, sell, cooldown, buy, sell]

S0->S1：今天购入股票；

S0->S0: 等待，不购入股票；

S1->S1：购入股票后等待，不售出股票；

S1->S2: 将持有的股票售出；

S2->S0: 经历过售出股票之后，冷却一天进入可以再次购买的状态。

s0[i] = max(s0[i - 1], s2[i - 1]); // Stay at s0, or rest from s2
s1[i] = max(s1[i - 1], s0[i - 1] - prices[i]); // Stay at s1, or buy from s0
s2[i] = s1[i - 1] + prices[i]; // Only one way from s1

int maxProfit(vector<int>& prices){
if (prices.size() <= 1) return 0;
vector<int> s0(prices.size(), 0);
vector<int> s1(prices.size(), 0);
vector<int> s2(prices.size(), 0);
s1[0] = -prices[0];
s0[0] = 0;
s2[0] = INT_MIN;
for (int i = 1; i < prices.size(); i++) {
s0[i] = max(s0[i - 1], s2[i - 1]);
s1[i] = max(s1[i - 1], s0[i - 1] - prices[i]);
s2[i] = s1[i - 1] + prices[i];
}
return max(s0[prices.size() - 1], s2[prices.size() - 1]);
}

int maxProfit(vector<int> &prices) {
for (int price : prices) {
prev_sell = sell;
sell = max(prev_buy + price, sell);
}
return sell;
}

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120