Introduction
- 递归方法是我们经常使用的一种实现策略,只要思路清晰,实现起来就会非常简单。
- 然而,递归方法也是有一些缺点的,比如需要使用系统栈维护现场,资源及时间的开销都比非递归要大的多。而在acm竞赛中,也会有系统栈大小的限制,如果递归深度过深,很有可能爆栈。因此,有时非递归转递归还是很有必要的。
- 当然,我们都知道递归转非递归无非就是我们维护一个栈,模拟系统栈就好啦~然而,具体怎么模拟,不实际去做,我们是很难体会到其中的困难的。
- 在之前的面试中,学到了一种个人感觉非常简单实用的转换策略,可以说是一种通法,这里就想借着汉诺塔问题来分享一下~
汉诺塔
汉诺塔问题大家都比较熟悉吧,具体题意和思路我就不说了,放一个openjudge上百练的连接:
这里先给出递归的代码:
#include <bits/stdc++.h>
using namespace std;
void move(char a, char c, int n)
{
cout << n<<":"<<a<<"->"<<c<<endl;
}
void dfs(char a, char b, char c, int n){
if (n == 1){
move(a, c, n);
return;
}
dfs(a,c,b,n-1);
move(a, c, n);
dfs(b, a, c, n-1);
}
int main()
{
char a,b,c;
int n;
cin>>n>>a>>b>>c;
dfs(a,b,c,n);
return 0;
}
- 这段递归代码非常简单,但是想要把它转换为非递归,却不是那么容易。当然也有一些方法是针对汉诺塔问题给出的非递归实现方法,但这不是我们关注的重点。我们希望通过模拟系统栈,给出一种通法。
- 通法思路非常简单:用一个栈维护函数名,参数信息,然后每次出栈的如果是递归调用的函数,我们就倒序把这个把递归函数的每行语句插入到栈中;出栈的如果是非递归的函数,我们就正序执行它就好了。
- 汉诺塔问题的非递归实现如下
#include <bits/stdc++.h>
using namespace std;
void move(char a, char b, int n){
cout << n << ":" << a << "->" << b << endl;
}
struct Node{
char a, b, c;
int n;
bool flag;
Node(char a='a', char b='b', char c = 'c', int n=0, bool flag=1)
: a(a), b(b), c(c), n(n), flag(flag){}
};
stack<Node> sta;
int main(){
char a,b,c;
int n;
cin>>n>>a>>b>>c;
sta.push(Node(a,b,c,n,1));
while (sta.size()){
bool f = sta.top().flag;
char a = sta.top().a, b = sta.top().b, c = sta.top().c;
int t = sta.top().n;
sta.pop();
if (f == 0 || t == 1){
move(a,c,t);
continue;
}
sta.push(Node(b,a,c,t-1,1));
sta.push(Node(a,0,c,t,0));
sta.push(Node(a,c,b,t-1,1));
}
return 0;
}
形式化描述一下
- 设递归调用函数为A,非递归函数为B1, B2, B3, B4
- 对于一个两阶段递归调用的函数A来说,它总可以写成如下形式(暂时忽略了调用参数)
if 满足结束条件
Call B1
return
Call B2
Call A
Call B3
Call A
Call B4
- 那么我们的非递归方法可以形式:
define stack<函数名, 函数参数> s
s.push(A,初始参数)
while (s.isempty == false){
函数名 x = 栈顶元素函数名
函数参数 y = 栈顶函数参数
s.pop()
if x 是非递归函数
Call x
continue
if y 满足结束条件
Call B1
continue
s.push(B4, 参数)
s.push(A, 参数)
s.push(B3, 参数)
s.push(A, 参数)
s.push(B2, 参数)
}
- 当然更复杂的递归调用函数也可以使用类似方法进行转换