朴素贝叶斯算法实现邮件分类

python实现基于贝叶斯的简单垃圾邮件分类 在400封邮件(正常邮件与垃圾邮件各一半)的测试集中测试结果为分类准确率95.15%,在仅仅统计词频计算概率的情况下,分类结果还是相当不错的。 

1、准备工作 python3.4开发环境; 结巴分词工具:https://github.com/fxsjy/jieba

2、贝叶斯公式

 我们要做的是计算在已知词向量w=(w1,w2,...,wn)w=(w1,w2,...,wn)的条件下求包含该词向量邮件是否为垃圾邮件的概率,即求:

 

3、实现步骤 

思路:是一个分词并记录词频的过程: (1)对训练集用结巴分词,并用停用表进行简单过滤,然后使用正则表达式过滤掉邮件中的非中文字符; (2)分别保存正常邮件与垃圾邮件中出现的词有多少邮件出现该词,得到两个词典。例如词"疯狂"在8000封正常邮件中出现了20次,在8000封垃圾邮件中出现了200次; (3)对测试集中的每一封邮件做同样的处理,并计算得到P(s|w)P(s|w)最高的15个词,在计算过程中,若该词只出现在垃圾邮件的词典中,则令P(w|s′)=0.01P(w|s′)=0.01,反之亦然;若都未出现,则令P(s|w)=0.4P(s|w)=0.4。PS.这里做的几个假设基于前人做的一些研究工作得出的。 (4)对得到的每封邮件中重要的15个词利用式2计算概率,若概率>>阈值α(一般设为0.9)α(一般设为0.9),则判为垃圾邮件,否则判为正常邮件。

4.数据集准备

邮件数据集:email

百度网盘获取:

    链接:https://pan.baidu.com/s/13exTbxSciSd5qoN0pkecgg 
    提取码:op8m

5.代码实现

垃圾邮件分类实现

# -*- coding: UTF-8 -*-
import numpy as np
import re
import random

"""
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表
Parameters:
    dataSet - 整理的样本数据集
Returns:
    vocabSet - 返回不重复的词条列表,也就是词汇表
"""


def createVocabList(dataSet):
    vocabSet = set([])  # 创建一个空的不重复列表
    for document in dataSet:
        vocabSet = vocabSet | set(document)  # 取并集
    return list(vocabSet)


"""
函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0
Parameters:
    vocabList - createVocabList返回的列表
    inputSet - 切分的词条列表
Returns:
    returnVec - 文档向量,词集模型
"""


def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)  # 创建一个其中所含元素都为0的向量
    for word in inputSet:  # 遍历每个词条
        if word in vocabList:  # 如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)] = 1
        else:
            print("the word: %s is not in my Vocabulary!" % word)
    return returnVec  # 返回文档向量


"""
函数说明:根据vocabList词汇表,构建词袋模型
Parameters:
    vocabList - createVocabList返回的列表
    inputSet - 切分的词条列表
Returns:
    returnVec - 文档向量,词袋模型
"""


def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0] * len(vocabList)  # 创建一个其中所含元素都为0的向量
    for word in inputSet:  # 遍历每个词条
        if word in vocabList:  # 如果词条存在于词汇表中,则计数加一
            returnVec[vocabList.index(word)] += 1
    return returnVec  # 返回词袋模型


"""
函数说明:朴素贝叶斯分类器训练函数
Parameters:
    trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
    trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
    p0Vect - 正常邮件类的条件概率数组
    p1Vect - 垃圾邮件类的条件概率数组
    pAbusive - 文档属于垃圾邮件类的概率
"""


def trainNB0(trainMatrix, trainCategory):
    numTrainDocs = len(trainMatrix)  # 计算训练的文档数目
    numWords = len(trainMatrix[0])  # 计算每篇文档的词条数
    pAbusive = sum(trainCategory) / float(numTrainDocs)  # 文档属于垃圾邮件类的概率
    p0Num = np.ones(numWords)
    p1Num = np.ones(numWords)  # 创建numpy.ones数组,词条出现数初始化为1,拉普拉斯平滑
    p0Denom = 2.0
    p1Denom = 2.0  # 分母初始化为2 ,拉普拉斯平滑
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:  # 统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:  # 统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = np.log(p1Num / p1Denom)
    p0Vect = np.log(p0Num / p0Denom)  # 取对数,防止下溢出
    return p0Vect, p1Vect, pAbusive  # 返回属于正常邮件类的条件概率数组,属于侮辱垃圾邮件类的条件概率数组,文档属于垃圾邮件类的概率


"""
函数说明:朴素贝叶斯分类器分类函数
Parameters:
	vec2Classify - 待分类的词条数组
	p0Vec - 正常邮件类的条件概率数组
	p1Vec - 垃圾邮件类的条件概率数组
	pClass1 - 文档属于垃圾邮件的概率
Returns:
	0 - 属于正常邮件类
	1 - 属于垃圾邮件类
"""


def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    # p1 = reduce(lambda x, y: x * y, vec2Classify * p1Vec) * pClass1  # 对应元素相乘
    # p0 = reduce(lambda x, y: x * y, vec2Classify * p0Vec) * (1.0 - pClass1)
    p1 = sum(vec2Classify * p1Vec) + np.log(pClass1)
    p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
    print(f"p0 = {p0:.3}, p1 = {p1:.3}")
    if p1 > p0:
        return 1
    else:
        return 0


"""
函数说明:接收一个大字符串并将其解析为字符串列表
"""


def textParse(bigString):  # 将字符串转换为字符列表
    listOfTokens = re.split(r'\W+', bigString)  # 将特殊符号作为切分标志进行字符串切分,即非字母、非数字
    return [tok.lower() for tok in listOfTokens if len(tok) > 2]  # 除了单个字母,例如大写的I,其它单词变成小写


"""
函数说明:测试朴素贝叶斯分类器,使用朴素贝叶斯进行交叉验证
"""


def spamTest():
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):  # 遍历25个txt文件
        wordList = textParse(open('email/spam/%d.txt' % i, 'r').read())  # 读取每个垃圾邮件,并字符串转换成字符串列表
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(1)  # 标记垃圾邮件,1表示垃圾文件
        wordList = textParse(open('email/ham/%d.txt' % i, 'r').read())  # 读取每个非垃圾邮件,并字符串转换成字符串列表
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(0)  # 标记正常邮件,0表示正常文件
    vocabList = createVocabList(docList)  # 创建词汇表,不重复
    trainingSet = list(range(50))
    testSet = []  # 创建存储训练集的索引值的列表和测试集的索引值的列表
    for i in range(10):  # 从50个邮件中,随机挑选出40个作为训练集,10个做测试集
        randIndex = int(random.uniform(0, len(trainingSet)))  # 随机选取索索引值
        testSet.append(trainingSet[randIndex])  # 添加测试集的索引值
        del (trainingSet[randIndex])  # 在训练集列表中删除添加到测试集的索引值
    trainMat = []
    trainClasses = []  # 创建训练集矩阵和训练集类别标签系向量
    for docIndex in trainingSet:  # 遍历训练集
        trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))  # 将生成的词集模型添加到训练矩阵中
        trainClasses.append(classList[docIndex])  # 将类别添加到训练集类别标签系向量中
    p0V, p1V, pSpam = trainNB0(np.array(trainMat), np.array(trainClasses))  # 训练朴素贝叶斯模型
    errorCount = 0  # 错误分类计数
    for docIndex in testSet:  # 遍历测试集
        wordVector = setOfWords2Vec(vocabList, docList[docIndex])  # 测试集的词集模型
        if classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:  # 如果分类错误
            errorCount += 1  # 错误计数加1 
            print("分类错误的测试集:", docList[docIndex])
    print('错误率:%.2f%%' % (float(errorCount) / len(testSet) * 100))


if __name__ == '__main__':
    spamTest()

6.结果

 

 

总结
       

本次实验为实现垃圾邮件分类,从条件概率的格式推演到文本分类的基本实现,再到最终的垃圾邮件分类,做了一系列的工作。利用朴素贝叶斯来进行垃圾邮件分类的好处就是,朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率,并且算法也比较简单,容易实现,对于小规模的数据效果很不错。

        实验中遇到的两个问题,都是关于读取垃圾邮件txt文件的。第一个问题是运行输出的结果数据集为空,经过查找发现是读取问题,解决办法读取的方式改为r'[\W*]';把另外一个问题是txt文件的编码出错,于是把txt文件的编码改为了UTF-8,于是就可以了。

        朴素贝叶斯的缺点:如果我们使用了样本属性真实情况其实并不是相互独立性的,那么其实这样的分类效果可能不会很好。而且需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候,会由于假设的先验模型的原因导致预测效果不佳。

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
中文邮件分类朴素叶斯算法实现步骤如下: 1. 准备数据集:将邮件分为训练集和测试集。训练集用于训练模型,测试集用于测试模型准确率。 2. 分词:对邮件内容进行分词处理,将一封邮件转化为一个词汇列表。 3. 特征提取:将每个邮件转化为一个向量,向量的每个元素对应一个特征。 4. 训练模型:使用训练集训练朴素叶斯模型,计算每个类别的先验概率和条件概率。 5. 测试模型:使用测试集测试模型准确率。 6. 应用模型:使用训练好的模型对新邮件进行分类。 代码实现如下: ```python import jieba import os import random import numpy as np # 分词函数 def cut_words(file_path): with open(file_path, 'r', encoding='utf-8') as f: text = f.read() words = jieba.cut(text) return list(words) # 获取停用词列表 def get_stopwords(): with open('stopwords.txt', 'r', encoding='utf-8') as f: stopwords = f.readlines() stopwords = [word.strip() for word in stopwords] return stopwords # 获取所有文件路径 def get_file_path(root_path): file_path_list = [] for root, dirs, files in os.walk(root_path): for file in files: file_path_list.append(os.path.join(root, file)) return file_path_list # 计算先验概率和条件概率 def train_NB(train_data, train_label): # 先验概率 prior_prob = {} total_num = len(train_label) label_set = set(train_label) for label in label_set: prior_prob[label] = train_label.count(label) / total_num # 条件概率 word_prob = {} words_set = set([word for text in train_data for word in text]) for label in label_set: word_prob[label] = {} label_index = [i for i in range(len(train_label)) if train_label[i] == label] label_text = [train_data[i] for i in label_index] total_words_num = sum([len(text) for text in label_text]) for word in words_set: word_prob[label][word] = (sum([text.count(word) for text in label_text]) + 1) / (total_words_num + len(words_set)) return prior_prob, word_prob # 预测函数 def predict_NB(test_data, prior_prob, word_prob): predict_label = [] label_set = list(prior_prob.keys()) for text in test_data: max_prob = -np.inf for label in label_set: prob = np.log(prior_prob[label]) for word in text: if word in word_prob[label]: prob += np.log(word_prob[label][word]) if prob > max_prob: max_prob = prob predict = label predict_label.append(predict) return predict_label # 交叉验证 def cross_validation(data, label, k): data_num = len(label) index = list(range(data_num)) random.shuffle(index) fold_size = data_num // k accuracy_list = [] for i in range(k): start = i * fold_size end = min((i + 1) * fold_size, data_num) test_index = index[start:end] train_index = list(set(index) - set(test_index)) train_data = [data[i] for i in train_index] train_label = [label[i] for i in train_index] test_data = [data[i] for i in test_index] test_label = [label[i] for i in test_index] prior_prob, word_prob = train_NB(train_data, train_label) predict_label = predict_NB(test_data, prior_prob, word_prob) accuracy = sum([1 for i in range(len(test_label)) if test_label[i] == predict_label[i]]) / len(test_label) accuracy_list.append(accuracy) return sum(accuracy_list) / k if __name__ == '__main__': # 获取停用词列表 stopwords = get_stopwords() # 获取文件路径 file_path_list = get_file_path('data') # 获取所有文本和对应标签 text_list = [] label_list = [] for file_path in file_path_list: label = file_path.split('\\')[-2] label_list.append(label) words = cut_words(file_path) words = [word for word in words if word not in stopwords] text_list.append(words) # 执行交叉验证 accuracy = cross_validation(text_list, label_list, 5) print('模型准确率:%.2f%%' % (accuracy * 100)) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值